纺织学报 ›› 2021, Vol. 42 ›› Issue (11): 1-8.doi: 10.13475/j.fzxb.20211003008
• 特邀论文 • 下一篇
JIANG Yulin1,2,3, WANG Hui1,2,3, ZHANG Keqin1,2,3()
摘要:
丝素蛋白(SF)作为一种天然且古老的蛋白质材料,因其优异的特性成为了生物3D打印墨水材料绝佳的候选者,在生物医学领域受到了广泛的关注。为此,概述了SF在生物3D打印领域的发展,总结了SF材料的物理化学和生物学基本特性,探讨了其作为生物墨水应用于挤出式生物3D打印、光固化生物3D打印和喷墨生物3D打印的要求和可加工性。综述了近年来SF与人工合成聚合物、天然聚合物和无机功能材料复合形成SF基水凝胶墨水在生物3D打印领域中的研究进展,对其所面临的挑战进行了讨论。指出:随着生物3D打印技术的深入发展,通过生物3D打印形成的SF基水凝胶构建体在生物医学领域会有更广阔的应用前景。
中图分类号:
[1] |
VEPARI C, KAPLAN D L. Silk as a biomaterial[J]. Progress in Polymer Science, 2007, 32(8/9):991-1007.
doi: 10.1016/j.progpolymsci.2007.05.013 |
[2] |
ALTMAN G H, DIAZ F, JAKUBA C, et al. Silk-based biomaterials[J]. Biomaterials, 2003, 24(3):401-416.
doi: 10.1016/S0142-9612(02)00353-8 |
[3] | 卢秉恒, 李涤尘. 增材制造(3D打印)技术发展[J]. 机械制造与自动化, 2013(4):1-4. |
LU Bingheng, LI Dichen. Development of the additive manufacturing (3D printing) technology[J]. Machine Building Automation, 2013(4):1-4. | |
[4] |
MURPHY S V, ATALA A. 3D bioprinting of tissues and organs[J]. Nature Biotechnology, 2014, 32(8):773-785.
doi: 10.1038/nbt.2958 |
[5] |
OMENETTO F G, KAPLAN D L. New opportunities for an ancient material[J]. Science, 2010, 329:528-531.
doi: 10.1126/science.1188936 |
[6] | 史建峰, 王涵, 赵蕾, 等. 3D生物打印支架材料的研究进展[J]. 中国药事, 2018, 32(10):1406-1411. |
SHI Jianfeng, WANG Han, ZHAO Lei, et al. Research progress of scaffold materials for 3-dimensional bioprinting[J]. Chinese Pharmaceutical Affairs, 2018, 32(10):1406-1411. | |
[7] |
KLEBE R J. Cytoscribing a method for micropositioning cells and the construction of 2-dimensional and 3-dimensional synthetic tissues[J]. Experimental Cell Research, 1988, 179(2):362-373.
doi: 10.1016/0014-4827(88)90275-3 |
[8] |
YAN Y, WANG X, PAN Y, et al. Fabrication of viable tissue-engineered constructs with 3D cell-assembly technique[J]. Biomaterials, 2005, 26(29):5864-5871.
doi: 10.1016/j.biomaterials.2005.02.027 |
[9] |
JOSE R R, BROWN J E, POLIDO K E, et al. Polyol-silk bioink formulations as two-part room-temperature curable materials for 3D printing[J]. ACS Biomaterials Science Engineering, 2015, 1(9):780-788.
doi: 10.1021/acsbiomaterials.5b00160 |
[10] |
SOMMER M R, SCHAFFNER M, CARNELLI D, et al. 3D printing of hierarchical silk fibroin structures[J]. ACS Appl Mater Interfaces, 2016, 8(50):34677-34685.
doi: 10.1021/acsami.6b11440 |
[11] |
RODRIGUEZ M J, BROWN J, GIORDANO J, et al. Silk based bioinks for soft tissue reconstruction using 3-dimensional (3D) printing with in vitro and in vivo assessments[J]. Biomaterials, 2017, 117:105-115.
doi: 10.1016/j.biomaterials.2016.11.046 |
[12] |
KIM S H, YEON Y K, LEE J M, et al. Precisely printable and biocompatible silk fibroin bioink for digital light processing 3D printing[J]. Nature Communications, 2018, 9(1):1620.
doi: 10.1038/s41467-018-03759-y |
[13] |
FITZPATRICK V, MARTíN-MOLDES Z, DECK A, et al. Functionalized 3D-printed silk-hydroxyapatite scaffolds for enhanced bone regeneration with innervation and vascularization[J]. Biomaterials, 2021, 276:120995.
doi: 10.1016/j.biomaterials.2021.120995 |
[14] |
LIU B, SONG Y W, JIN L, et al. Silk structure and degradation[J]. Colloids and Surfaces B-Biointerfaces, 2015, 131:122-128.
doi: 10.1016/j.colsurfb.2015.04.040 |
[15] |
KAPOOR S, KUNDU S C. Silk protein based hydrogels: promising advanced materials for biomedical applications[J]. Acta Biomaterialia, 2016, 31:17-32.
doi: 10.1016/j.actbio.2015.11.034 |
[16] |
FENG Y, LIN J, NIU L, et al. High molecular weight silk fibroin prepared by papain degumming[J]. Polymers, 2020, 12(9):2105.
doi: 10.3390/polym12092105 |
[17] |
ROCKWOOD D N, PREDA R C, YÜCEL T, et al. Materials fabrication from bombyx mori silk fibroin[J]. Nature Protocols, 2011, 6(10):1612-1631.
doi: 10.1038/nprot.2011.379 |
[18] |
HUANG W W, LING S J, LI C M, et al. Silkworm silk-based materials and devices generated using bio-nanotechnology[J]. Chemical Society Reviews, 2018, 47(17):6486-6504.
doi: 10.1039/C8CS00187A |
[19] |
QI Yu, WANG Hui, WEI Kai, et al. A review of structure construction of silk fibroin biomaterials from single structures to multi-level structures[J]. International Journal of Molecular Sciences, 2017, 18(3):237.
doi: 10.3390/ijms18030237 |
[20] | WANG Y, KIM B J, PENG B, et al. Controlling silk fibroin conformation for dynamic, responsive, multifunctional, micropatterned surfaces[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(43):21361-21368. |
[21] |
MINOURA N, AIBA S, GOTOH Y, et al. Attachment and growth of cultured fibroblast cells on silk protein matrices[J]. Journal of Biomedical Materials Research, 1995, 29(10):1215-1221.
doi: 10.1002/(ISSN)1097-4636 |
[22] |
PANILAITIS B, ALTMAN G H, CHEN J S, et al. Macrophage responses to silk[J]. Biomaterials, 2003, 24(18):3079-3085.
doi: 10.1016/S0142-9612(03)00158-3 |
[23] |
ALTMAN G H, HORAN R L, LU H H, et al. Silk matrix for tissue engineered anterior cruciate ligaments[J]. Biomaterials, 2002, 23(20):4131-4141.
doi: 10.1016/S0142-9612(02)00156-4 |
[24] | 史乾坤, 王玉鹏, 张浩, 等. 蛋白质基生物材料的生物医学应用进展[J]. 功能高分子学报, 2021, 34(2):161-171. |
SHI Qiankun, WANG Yupeng, ZHANG Hao, et al. Advances in protein-based biomaterials for biomedical applications[J]. Journal of Functional Polymers, 2021, 34(2):161-171. | |
[25] |
ZAINUDDIN, LE T T, PARK Y, et al. The behavior of aged regenerated bombyx mori silk fibroin solutions studied by H-1 NMR and rheology[J]. Biomaterials, 2008, 29(32):4268-4274.
doi: 10.1016/j.biomaterials.2008.07.041 |
[26] | RIBEIRO V P, PINA S, OLIVEIRA J M, et al. Silk fibroin-based hydrogels and scaffolds for osteochondral repair and regeneration[J]. Osteochondral Tissue Engineering, 2018, 1058:305-325. |
[27] |
YANG Y, SONG X, LI X, et al. Recent progress in biomimetic additive manufacturing technology: from materials to functional structures[J]. Advanced Materials, 2018, 30(36):1706539.
doi: 10.1002/adma.v30.36 |
[28] |
MALDA J, VISSER J, MELCHELS F P, et al. 25th anniversary article: engineering hydrogels for biofabrication[J]. Advanced Materials, 2013, 25(36):5011-5028.
doi: 10.1002/adma.201302042 |
[29] |
DONDERWINKEL I, VAN HEST J C M, CAMERON N R. Bio-inks for 3D bioprinting: recent advances and future prospects[J]. Polymer Chemistry, 2017, 8(31):4451-4471.
doi: 10.1039/C7PY00826K |
[30] |
AMORIM P A, D'ÁVILA M A, ANAND R, et al. Insights on shear rheology of inks for extrusion-based 3D bioprinting[J]. Bioprinting, 2021, 22:e00129.
doi: 10.1016/j.bprint.2021.e00129 |
[31] |
GHOSH S, PARKER S T, WANG X, et al. Direct‐write assembly of microperiodic silk fibroin scaffolds for tissue engineering applications[J]. Advanced Functional Materials, 2008, 18(13):1883-1889.
doi: 10.1002/adfm.v18:13 |
[32] | KIM S H, KIM D Y, LIM T H, et al. Silk fibroin bioinks for digital light processing (DLP) 3D bioprinting[J]. Advances in Experimental Medicine and Biology, 2020, 1249:53-66. |
[33] | 陈晓敏, 王卉, 吴晨星, 等. 丝素蛋白三维打印墨水材料的交联方式研究进展[J]. 现代化工, 2021, 41(3):36-41. |
CHEN Xiaomin, WANG Hui, WU Chenxing, et al. Research progress on cross-linking methods for silk fibroin ink materials in 3D printing[J]. Modern Chemical Industry, 2021, 41(3):36-41. | |
[34] | LIMEM S, CALVERT P, KIM H J, et al. Differentiation of bone marrow stem cells on inkjet printed silk lines[J]. MRS Proceedings, 2006, 950:D04-18. |
[35] | CUI X, LI J, HARTANTO Y, et al. Advances in extrusion 3D bioprinting: a focus on multicomponent hydrogel-based bioinks[J]. Advanced Healthcare Materials, 2020, 9(15):190164. |
[36] |
WANG Q, HAN G, YAN S, et al. 3D printing of silk fibroin for biomedical applications[J]. Materials, 2019, 12(3):504.
doi: 10.3390/ma12030504 |
[37] |
CHIMENE D, LENNOX K K, KAUNAS R R, et al. Advanced bioinks for 3D printing: a materials science perspective[J]. Annals of Biomedical Engineering, 2016, 44(6):2090-2102.
doi: 10.1007/s10439-016-1638-y |
[38] |
SHANJANI Y, PAN C C, ELOMAA L, et al. A novel bioprinting method and system for forming hybrid tissue engineering constructs[J]. Biofabrication, 2015, 7(4):045008.
doi: 10.1088/1758-5090/7/4/045008 |
[39] |
LEE K Y, MOONEY D J. Hydrogels for tissue engineering[J]. Chemical Reviews, 2001, 101(7):1869-1879.
doi: 10.1021/cr000108x |
[40] |
EGAWA S, KURITA H, KANNO T, et al. Effect of silk fibroin concentration on the properties of polyethylene glycol dimethacrylates for digital light processing printing[J]. Advanced Engineering Materials, 2021, 23(9):2100487.
doi: 10.1002/adem.v23.9 |
[41] |
LI Z, WU N, CHENG J, et al. Biomechanically, structurally and functionally meticulously tailored polycaprolactone/silk fibroin scaffold for meniscus regeneration[J]. Theranostics, 2020, 10(11):5090-5106.
doi: 10.7150/thno.44270 |
[42] |
LI X H, ZHU X, LIU X Y, et al. The corticospinal tract structure of collagen/silk fibroin scaffold implants using 3D printing promotes functional recovery after complete spinal cord transection in rats[J]. Journal of Materials Science Materials in Medicine, 2021, 32(4):31.
doi: 10.1007/s10856-021-06500-2 |
[43] |
KIM E, SEOK J M, BAE S B, et al. Silk fibroin enhances cytocompatibilty and dimensional stability of alginate hydrogels for light-based three-dimensional bioprinting[J]. Biomacromolecules, 2021, 22(5):1921-1931.
doi: 10.1021/acs.biomac.1c00034 |
[44] |
LEE H, SHIN D, SHIN S, et al. Effect of gelatin on dimensional stability of silk fibroin hydrogel structures fabricated by digital light processing 3D printing[J]. Journal of Industrial and Engineering Chemistry, 2020, 89:119-127.
doi: 10.1016/j.jiec.2020.03.034 |
[45] |
SANGKERT S, KAMOLMATYAKUL S, GELINSKY M, et al. 3D printed scaffolds of alginate/polyvinylalcohol with silk fibroin based on mimicked extracellular matrix for bone tissue engineering in maxillofacial surgery[J]. Materials Today Communications, 2021, 26:102140.
doi: 10.1016/j.mtcomm.2021.102140 |
[46] |
KADUMUDI F B, HASANY M, PIERCHALA M K, et al. The manufacture of unbreakable bionics via multifunctional and self-healing silk-graphene hydrogels[J]. Advanced Materials, 2021, 33(35):2100047.
doi: 10.1002/adma.v33.35 |
[1] | 李枫, 杨嘉豪, 赖耿昌, 王建南, 许建梅. 高分子聚合物栓塞微球的研究进展[J]. 纺织学报, 2021, 42(10): 180-189. |
[2] | 于志财, 刘金如, 何华玲, 马胜男, 姜会钰. 基于高分子水凝胶的阻燃织物研究与应用进展[J]. 纺织学报, 2021, 42(09): 180-186. |
[3] | 孙钰晟, 左保齐. 高分子聚合物硬骨缺损修复材料研究进展[J]. 纺织学报, 2021, 42(08): 175-184. |
[4] | 刘浩, 路明磊, 黄晓卫, 王娜, 王雪芳, 宁新, 明津法. 酸-醇体系丝素蛋白水凝胶制备与性能表征[J]. 纺织学报, 2021, 42(08): 41-48. |
[5] | 丁梦瑶, 戴梦男, 李蒙, 刘苹, 徐晶晶, 王建南. 不同分子质量丝素蛋白的分离与表征[J]. 纺织学报, 2021, 42(07): 46-53. |
[6] | 殷聚辉, 郭静, 王艳, 曹政, 管福成, 刘树兴. 基于海藻酸钠/磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021, 42(02): 53-59. |
[7] | 杨亚, 闫凤祎, 王卉, 张克勤. 丝素蛋白/磷酸八钙复合材料生物界面的蛋白质吸附和细胞响应[J]. 纺织学报, 2021, 42(02): 41-46. |
[8] | 盛明非, 王婉宁, 张丽平, 付少海. 可连续化生产的电刺激响应型液晶纤维制备及其性能[J]. 纺织学报, 2021, 42(02): 27-33. |
[9] | 宋广州, 涂芳芳, 丁梦瑶, 戴梦男, 殷音, 董凤林, 王建南. 丝素蛋白负电性增强改性及其对降钙素基因相关肽的加载能力[J]. 纺织学报, 2020, 41(12): 7-12. |
[10] | 王曙东, 马倩, 王可, 瞿才新, 戚玉. 蚕丝蛋白/明胶复合水凝胶的结构与生物相容性[J]. 纺织学报, 2020, 41(11): 41-47. |
[11] | 孙范忱, 郭静, 于跃, 张森. 聚羟基脂肪酸酯/海藻酸钠纳米纤维的制备及其性能[J]. 纺织学报, 2020, 41(05): 15-19. |
[12] | 王宗乾, 杨海伟, 周剑, 李长龙. 尿素脱胶对丝素蛋白气凝胶力学性能的影响[J]. 纺织学报, 2020, 41(04): 9-14. |
[13] | 孙广东, 黄益, 邵建中, FAN Qinguo. 光交联丝素蛋白水凝胶的蓝光引发体系[J]. 纺织学报, 2020, 41(04): 64-71. |
[14] | 钟红荣, 方艳, 包红, 吴婷芳, 张小宁, 徐水, 朱勇. 丝素基双层敷料的制备及其性能[J]. 纺织学报, 2020, 41(02): 13-19. |
[15] | 李思捷, 张彩丹. 聚天冬氨酸基纤维水凝胶的制备及其释药性能[J]. 纺织学报, 2020, 41(02): 20-25. |
|