纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 93-99.doi: 10.13475/j.fzxb.20211003707
HAN Wanli1,2(), XIE Sheng2, WANG Xinhou3, WANG Yudong4
摘要:
为探究纤维在熔喷气流场中的牵伸运动过程,对熔喷气流场和纤维牵伸过程进行数值模拟。分析了熔喷气流场的分布特点,采用欧拉-拉格朗日法建立了熔喷纤维牵伸力学模型,获得熔喷纤维在气流场中的运动轨迹、牵伸倍数等信息;利用高速摄影机捕获了纤维在熔喷气流场中的运动轨迹并验证了模拟结果。结果表明:熔喷喷嘴下方存在气流回旋区,气流场分为射流单独流动区、射流汇合融合区和射流合并区;熔喷纤维的牵伸倍数先增加后减小,纤维运动在射流单独流动区出现鞭动,在射流合并区中存在纤维折叠成圈现象;射流汇合融合区是纤维细化的主要区域,该区域内纤维鞭动增加,牵伸倍数最大;验证实验中纤维运动中的鞭动、折叠成圈和运动轨迹与模拟结果一致。
中图分类号:
[1] | 孟庆兴. 熔喷非织造技术的发展与应用现状[J]. 聚酯工业, 2020, 33(3): 16-19. |
MENG Qingxing. Development and application of melt-blown nonwoven technology[J]. Polyester Industry, 2020, 33(3): 16-19. | |
[2] | 周晴, 李丽, 魏安海, 等. 医用口罩熔喷层非油性颗粒过滤效率和纤维形态的相关性分析[J]. 中国医学装备, 2020, 17(10): 194-196. |
ZHOU Qing, LI Li, WEI Anhai, et al. Correlation analysis on the filter efficiency and fiber morphology of non-oiliness particle of melt-blown nonwovens of medical mask[J]. China Medical Equipment, 2020, 17(10): 194-196. | |
[3] | 覃俊, 陈丽萍, 何勇. 聚苯硫醚熔喷超细纤维的应用前景展望[J]. 纺织科技进展, 2020(10): 1-5. |
QIN Jun, CHEN Liping, HE Yong. Application prospect of poly(p-phenylene sulfide) melt blown superfine fiber[J]. Progress in Textile Science & Technology, 2020(10): 1-5. | |
[4] | 孙焕惟, 张恒, 甄琪, 等. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20-28. |
SUN Huanwei, ZHANG Heng, ZHEN Qi, et al. Filtrations of propylene-based micro-nano elastic filters via melt blowing process[J]. Journal of Textile Research, 2020, 41(10): 20-28. | |
[5] | 刘禹豪, 孙辉, 王捷琪, 等. TiO2/MIL-88B(Fe)/聚丙烯复合熔喷非织造材料的制备及其性能[J]. 纺织学报, 2020, 41(2): 95-102. |
LIU Yuhao, SUN Hui, WANG Jieqi. Preparation of TiO2/MIL-88B(Fe)/polypropylene composite melt-blown nonwovens and study on dye degradation properties[J]. Journal of Textile Research, 2020, 41(2): 95-102. | |
[6] |
LI H, HUANG H, ZENG Y. Effects of compatibilizer and airflow field on the formation of helical microfibers via melt blowing[J]. Journal of Polymer Science Part B: Polymer Physics, 2019, 57(21): 1423-1433.
doi: 10.1002/polb.24887 |
[7] |
YANG Y, ZENG Y. Simultaneous measurement in nonisothermal melt-blowing airflow field: time-averaged and turbulent characteristics[J]. Industrial & Engineering Chemistry Research, 2020, 59(22): 10664-10672.
doi: 10.1021/acs.iecr.0c01278 |
[8] |
XIE S, ZENG Y. Turbulent air flow field and fiber whipping motion in the melt blowing process: experimental study[J]. Industrial & Engineering Chemistry Research, 2012, 51(14): 5346-5352.
doi: 10.1021/ie202938b |
[9] | 孙亚峰. 微纳米纤维纺丝拉伸机理的研究[D]. 上海: 东华大学, 2010:25-40. |
SUN Yafeng. Investigation of macro nano fiber formation[D]. Shanghai: Donghua University, 2010:25-40. | |
[10] |
ZENG Y C, SUN Y F, WANG X H. Numerical approach to modeling fiber motion during melt blowing[J]. Journal of Applied Polymer Science, 2011, 119(4): 2112-2123.
doi: 10.1002/app.32921 |
[11] |
WIELAND M, ARNE W, MARHEINEKE N, et al. Melt-blowing of viscoelastic jets in turbulent airflows: stochastic modeling and simulation[J]. Applied Mathematical Modelling, 2019, 76(12): 558-577.
doi: 10.1016/j.apm.2019.06.023 |
[12] |
XIE S, ZENG Y. Online measurement of fiber whipping in the melt blowing process[J]. Industrial & Engineering Chemistry Research, 2013, 52(5): 2116-2122.
doi: 10.1021/ie3024615 |
[13] |
HAN W, BHAT G S, WANG X. Investigation of nanofiber breakup in the melt blowing process[J]. Industrial & Engineering Chemistry Research, 2016, 55(11): 3150-3156.
doi: 10.1021/acs.iecr.5b04472 |
[14] |
SOLTANI I, MACOSKO C W. Influence of rheology and surface properties on morphology of nanofibers derived from islands-in-the-sea meltblown nonwovens[J]. Polymer, 2018, 145(6): 21-30.
doi: 10.1016/j.polymer.2018.04.051 |
[15] | 姬长春, 张开源, 王玉栋, 等. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(8): 175-180. |
JI Changchun, ZHANG Kaiyuan, WANG Yudong, et al. Numerical calculation and analysis of three-dimensional flow field in melt-blown process[J]. Journal of Textile Research, 2019, 40(8): 175-180. | |
[16] | HAN W, XIE S, SHI J, et al. Study on airflow field and fiber motion with new melt blowing die[J]. Polymer Engineering & Science, 2019, 59(6): 1182-1189. |
[17] |
KRUTKA H M, SHAMBAUGH R L, PAPAVASSILOU D V. Analysis of a melt blowing die: comparison of CFD and experiments[J]. Industrial & Engineering Chemistry Research, 2002, 41(20): 5125-5138.
doi: 10.1021/ie020366f |
[18] |
KRUTKA H M, SHAMBAUGH R L, PAPAVASSILOU D V. Effects of temperature and geometry on the flow field of the melt blowing process[J]. Industrial & Engineering Chemistry Research, 2004, 43(15): 4199-4210.
doi: 10.1021/ie040043e |
[19] |
HAN W, WANG X. Modeling melt blowing fiber with different polymer constitutive equations[J]. Fibers and Polymers, 2016, 17(1): 74-79.
doi: 10.1007/s12221-016-5721-7 |
[20] |
MATSUI M. Air drag on a continuous filament in melt spinning[J]. Transactions of the Society of Rheology, 1976, 20(3): 465-473.
doi: 10.1122/1.549434 |
[21] |
CHUNG C, KUMAR S. Onset of whipping in the melt blowing process[J]. Journal of Non-Newtonian Fluid Mechanics, 2013, 192: 37-47.
doi: 10.1016/j.jnnfm.2012.10.005 |
[1] | 谭林立, 秦柳, 李英儒, 邓伶俐, 谢知音, 李时东. 基于超临界二氧化碳的高效低阻聚丙烯熔喷纤维制备及其性能[J]. 纺织学报, 2023, 44(01): 87-92. |
[2] | 杨瑞华, 何闯, 龚新霞, 陈鹤文. 转杯纺分梳排杂区的气流场数值模拟[J]. 纺织学报, 2022, 43(10): 31-35. |
[3] | 汪军, 史倩倩, 李玲, 张玉泽. 双喂给双分梳转杯纺技术研究进展[J]. 纺织学报, 2022, 43(08): 12-20. |
[4] | 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184. |
[5] | 初曦, 邱华. 不同压强条件下环锭旋流喷嘴内部流场模拟[J]. 纺织学报, 2020, 41(09): 33-38. |
[6] | 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20-25. |
[7] | 张恒, 甄琪, 刘雍, 宋卫民, 刘让同, 张一风. 嵌入式聚丙烯/聚乙二醇微纳米纤维材料的结构特征及其气固过滤性能[J]. 纺织学报, 2019, 40(09): 28-34. |
[8] | 广少博, 金玉珍, 祝晓晨. 喷气织机延伸喷嘴内气流场特性分析[J]. 纺织学报, 2019, 40(04): 135-139. |
[9] | 尚珊珊, 郁崇文, 杨建平, 钱希茜. 喷气涡流纺纺纱过程中的气流场数值模拟[J]. 纺织学报, 2019, 40(03): 160-167. |
[10] | 林惠婷 汪军. 纤维在输纤通道气流场中运动的模拟[J]. 纺织学报, 2018, 39(02): 55-61. |
[11] | 韩晨晨 程隆棣 高卫东 薛元 杨瑞华. 基于有限元模型的喷气涡流纺纤维运动轨迹模拟[J]. 纺织学报, 2018, 39(02): 32-37. |
[12] | 刘超 杨瑞华 薛元 高卫东. 凝聚槽类型对转杯内气流场影响的数值模拟[J]. 纺织学报, 2017, 38(05): 128-133. |
[13] | 吴晓光 朱里 张驰 孔令学 万道玉. 零传动模式的高速轴向悬浮织针运动控制与试验分析[J]. 纺织学报, 2016, 37(4): 137-142. |
[14] | 刘超 杨瑞华 王鸿博 高卫东. 转杯纺纱通道三维流场的数值模拟[J]. 纺织学报, 2016, 37(09): 145-150. |
[15] | 辛三法 王新厚 胡守忠. 双槽熔喷工艺中外沿长度对空气流场的影响[J]. 纺织学报, 2015, 36(04): 71-75. |
|