纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 201-208.doi: 10.13475/j.fzxb.20211004708

• 机械与器材 • 上一篇    下一篇

基于弧形电容器的浆纱回潮率在线测量

陆浩杰1,2, 李曼丽2, 金恩琪2, 张宏伟2, 周赳1()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.绍兴文理学院 浙江省清洁染整技术研究重点实验室, 浙江 绍兴 312000
  • 收稿日期:2021-10-21 修回日期:2022-10-27 出版日期:2023-01-15 发布日期:2023-02-16
  • 通讯作者: 周赳(1969—),男,教授,博士。主要研究方向为纺织品设计。E-mail:zhoujiu34@126.com
  • 作者简介:陆浩杰(1985—),男,实验师,硕士。主要研究方向为纺织工程。
  • 基金资助:
    浙江省教育厅科研项目(Y202043100)

Online measurement of moisture regains of sized yarns based on arc capacitance sensor

LU Haojie1,2, LI Manli2, JIN Enqi2, ZHANG Hongwei2, ZHOU Jiu1()   

  1. 1. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Key Laboratory of Clean Dyeing and Finishing Technology of Zhejiang Province, Shaoxing University, Shaoxing, Zhejiang 312000, China
  • Received:2021-10-21 Revised:2022-10-27 Published:2023-01-15 Online:2023-02-16

摘要:

为提高上浆质量以及解决使用接触式电阻含水率测量仪会破坏浆膜的问题,设计开发了基于弧形电容器的浆纱回潮率在线测量系统。根据浆纱在弧形电容器中的电场模型和电容法测量原理,利用指数回归算法建立电容差与回潮率的函数模型。上浆时,浆纱穿过弧形电容器,电感、电容、电阻(LCR)电桥测试仪将测量的电容值数据传到上位机,上位机根据模型计算出实时浆纱回潮率。讨论了弧形电容器结构、LCR电桥测试仪测试参数、环境温湿度、浆液含固率、浆纱线密度、回潮率对测量电容值的影响。实验结果表明:电容值受LCR电桥测试仪测试频率的影响较大;电容值随电容器结构参数极板长度、极板包角的增大而增大,与极板曲率半径呈负相关;环境温湿度会对电容值产生复杂影响,因此要求在恒温恒湿条件下进行测量;浆纱回潮率对电容值的影响显著,且回潮率与电容差呈指数函数关系。在上浆机上使用电容式回潮率在线检测系统进行测试,得到的浆纱回潮率与烘箱法测量结果相比平均误差小于5%,本文系统具有一定的工程实用价值。

关键词: 浆纱, 上浆, 回潮率, 弧形电容器, 在线检测

Abstract:

Objective In order to fulfill the online detection of the moisture regain of the sized yarn in the sizing process, to improve the sizing quality, to reduce the carbon emission caused by sizing, and to solve the problem that the use of a contact type resistive measuring instrument may damage the sizing film, a measurement system for sizing moisture regain was developed.
Method According to the electric field model in the arc capacitor and the measurement principle of capacitive method, the model relating the capacitance difference and moisture regain was established. The sized yarn passed through the arc capacitor, and the LCR (inductance, capacitance, resistance) bridge tester captured the capacitance signal and transmitted it to the computer. The moisture regain of the sized yarn was calculated according to the model. The influences of the structure of the arc capacitor, the test parameters of the LCR bridge tester, the test environment, and the solid content of the slurry on the capacitance readings were discussed.
Results The experimental results show that the parameters of voltage, acquisition frequency, and internal resistance of the LCR bridge tester have little effect on capacitance value, while it is greatly affected by the testing frequency (Fig.3). At the frequency of 4 000 Hz, the capacitor was found to have the most significant response to water content (Fig.4), and hence 4 000 Hz was selected as the testing frequency of LCR bridge tester. It was revealed that as the curvature radius of the arc capacitor’s electrode plates increases, the capacitance value decreases, and that when the length of the electrode plate increases, the capacitance value increases. With the wrap angle of the electrode plate was increased, the capacitance value also increased (Fig.5). The capacitance simulated by the finite element technology were consistent with the measured results. The differences between the measured and the simulated values are caused by additional capacitance and environmental interference. Temperature and humidity were found to have a complex impact on the capacitance value (Fig.6), indicating that the system should be deployed under constant temperature and humidity conditions. The moisture regain of sized yarn demonstrated a significant effect on the capacitance, while the influence of fineness and size solid content were not obvious (Fig.7), where it can be seen that moisture regain is nonlinearly related to the capacitance difference. When moisture regain was increased, condensed water on and inside the yarn increased and a strong polarization reaction occurred at the frequency of 4 000 Hz with the capacitance value increasing. An exponential regression model of capacitance difference-sizing moisture regain is established. On the sizing machine, the capacitive sizing moisture regain online detection system developed by the research was adopted to measure the sizing moisture regain. Compared with the results of the oven method, the average error sizing moisture regain measurement was less than 5% (Tab.1).
Conclusion The capacitance value is greatly affected by the test frequency of the LCR bridge tester. The structure of the arc capacitor also influences the test capacitance value. The ambient temperature and humidity have complex effects on capacitance values. The influences of sized yarn moisture regain on capacitance are significant, while fineness and size solid content are not so obvious. The core components of a capacitive sizing moisture regain measurement system designed include an arc-capacitor sensor, an LCR bridge tester and a computer. The arc capacitor has a small and simple structure with low cost. It can measure sized yarns in a non-contact manner. Therefore, this system can be used in engineering practical situations.

Key words: sized yarn, sizing, moisture regain, arc capacitor sensor, online detection

中图分类号: 

  • TS114.1

图1

硬件设计示意图"

图2

主程序流程图"

图3

电容对LCR电桥测试仪的频率响应"

图4

电容对回潮率的频率响应显著性分布"

图5

弧形电容器结构参数与电容的关系"

图6

不同环境温湿度下测得的电容"

图7

不同回潮率、线密度和含固率的浆纱测得的电容差"

表1

电容法与烘干法测量回潮率结果比较"

编号 线密度/
tex
含固率/
%
回潮率/% 相对误差/
%
电容法 烘干法
1 20 0 9.75 10.40 6.24
2 20 0 11.01 10.67 3.15
3 77 0 8.87 8.86 0.03
4 20 5 8.46 8.28 2.18
5 20 5 9.00 9.97 9.66
6 20 5 10.94 11.11 1.52
7 77 5 8.58 7.88 8.90
8 77 5 9.61 9.44 1.75
9 77 5 11.04 10.84 1.85
10 20 10 7.87 7.97 1.33
11 20 10 8.83 8.57 3.01
12 20 10 10.90 10.97 0.63
13 77 10 7.95 8.44 5.86
14 77 10 9.84 9.63 2.21
15 77 10 11.05 10.82 2.13
[1] LI M L, JIN E Q, CHEN S Y. Effects of graft modification on apparent viscosity, adhesion, and film properties of sesbania gum for warp sizing[J]. Journal of The Textile Institute, 2020, 111: 309-317.
doi: 10.1080/00405000.2019.1632140
[2] 胡柯. 纺织企业生产过程关键环节碳排放研究[D]. 西安: 西安工程大学, 2018:25.
HU Ke. Research on the carbon emissions of textile enterprises in the key link of production process[D]. Xian: Xi'an Polytechnic University, 2018:25.
[3] CHRISTIE J H, WOODHEAD I M, KRENEK S, et al. A new model of DC conductivity of hygroscopic solids: part II: wool and silk[J]. Textile Research Journal, 2002, 72(4): 303-308.
doi: 10.1177/004051750207200405
[4] CHEUK S Y, MONTALVO J G, VON Hoven. Novel studies of non-aqueous volatiles in lint cotton moisture tests by complementary thermal methods[J]. Journal of Cotton Science, 2011, 15(2):179-188.
[5] WEMYSS A M, WHITE M A. A rapid method for the determination of the moisture content of wool and other fabrics[J]. Journal of The Textile Institute, 1984, 75(2): 152-155.
doi: 10.1080/00405008408658476
[6] DELHOM Christopher, RODGERS James, ZUMBA Jimmy. Microwave moisture measurement of cotton fiber moisture content in the laboratory[J]. AATCC Journal of Research, 2017, 4(3):1-7.
[7] RODGERS J, MONTALVO J, DAVIDONIS G, et al. Near infrared measurement of cotton fiber micronaire, maturity and fineness: a comparative investigation[J]. Textile Research Journal, 2010, 80(9): 780-793.
doi: 10.1177/0040517509343780
[8] 石风俊, 严灏景. 电容式均匀度仪基础问题的探讨[J]. 纺织学报, 1999, 20 (1): 3, 56-59.
SHI Fengjun, YAN Haojing. Discussion on basic problems of capacitive uniformity meter[J]. Journal of Textile Research, 1999, 20(1): 3, 56-59.
[9] 吕汉明, 王翔宇, 刘凤坤. 基于介电谱的醋酸酯水刺非织造布含水率估算[J]. 纺织学报, 2020, 41(6): 55-60.
LÜ Hanming, WANG Xiangyu, LIU Fengkun. Estimating water content of acetate fiber spunlaced nonwovens with dielectric spectroscopy[J]. Journal of Textile Research, 2020, 41(6): 55-60.
[10] RASHID W N A, MOHAMAD E J, RAHIM R A, et al. Development and experimental study of miniature two-plate electrical capacitance sensor to detect dielectric material[J]. Journal of Telecommunication, Electronic and Computer Engineering, 2018, 10(1-3):5-10.
[11] GEVORGIAN S. Analytic approximations for multilayer substrate coplanar-plate capacitors[C]// ABADEI S. IEEE MTT-S International Microwave Symposium Digest. Long Beach: IEEE, 2005:1435-1438.
[12] 葛松华. 非平行板电容器电场和电容的另一种计算[J]. 大学物理, 2004(11):34,41.
GE Songhua. Another method to calculate the electric field and the capacitance for a non-parallel plate capacitor[J]. College Physics, 2004(11):34,41.
[13] TSAMIS ED, AVARITSIOTIS JN. Design of planar capacitive type sensor for "water content" monitoring in a production line[J]. Sensors and Actuators Physical, 2005, 118(2):202-211.
doi: 10.1016/j.sna.2004.07.008
[14] 王小鑫, 闫洁冰, 胡红利, 等. 利用正交试验的电容传感器仿真及优化设计[J]. 西安交通大学学报, 2013, 47(2):81-86.
WANG Xiaoxin, YAN Jiebing, HU Hongli, et al. Simulation and optimization of capacitance sensor based on orthogonal test[J]. Journal of Xi'an Jiaotong University, 2013, 47(2):81-86.
[15] 席前, 张志勇, 徐燕豪, 等. 基于电容法和PLS建模的燕麦含水率快速检测[J]. 山西农业大学学报(自然科学版), 2018, 38(9): 52-57.
XI Qian, ZHANG Zhiyong, XU Yanhao, et al. Rapid moisture determination of oat grains with capacitance method and PLS modeling[J]. Journal of Shanxi Agricultural University(Natural Science Edition), 2018, 38(9): 52-57.
[16] 李晋阳, 毛罕平. 基于阻抗和电容的番茄叶片含水率实时监测[J]. 农业机械学报, 2016, 47(5): 295-299, 351.
LI Jinyang, MAO Hanping. Monitoring of tomato leaf moisture content based on electrical impedance and capacitance[J]. Journal of Agricultural Machinery, 2016, 47(5): 295-299, 351.
[17] PEI X, ZHANG X. Investigation of MWS polarization and DC conductivity in polyamide610 using dielectric relaxation spectroscopy[J]. European Polymer Journal, 2011, 47(5):1031-1038.
doi: 10.1016/j.eurpolymj.2011.02.016
[18] 牛旋. 高介电常数纺织材料的制备及其性能探索研究[D]. 天津: 天津工业大学, 2018:10.
NIU Xuan. Research on preparation and performance of high dielectric constant textile material[D]. Tianjin: Tiangong University, 2018:10.
[19] HEARLE J W S. Capacity, dielectric constant, and power factor of fiber assemblies[J]. Textile Research Journal, 1954, 24(4):307-321.
doi: 10.1177/004051755402400403
[1] 徐健, 胡道杰, 刘秀平, 韩琳, 闫焕营. 基于改进型RFB-MobileNetV3的棉杂图像检测[J]. 纺织学报, 2023, 44(01): 179-187.
[2] 吴帆, 李勇, 陈晓川, 汪军, 徐敏俊. 基于三维编织模型的棉纤维集合体压缩过程有限元建模与仿真[J]. 纺织学报, 2022, 43(09): 89-94.
[3] 陈宇恒, 高卫东, 任家智. 精梳机分离牵伸力在线检测与规律分析[J]. 纺织学报, 2022, 43(08): 1-6.
[4] 余鹏举, 王黎黎, 张文奇, 刘洋, 李文斌. 回潮率对石英纤维纱织造前后力学性能的影响[J]. 纺织学报, 2022, 43(05): 92-96.
[5] 郭敏, 王静安, 郭明瑞, 高卫东. 基于毛羽图像检测的浆纱抗起毛性能评价[J]. 纺织学报, 2022, 43(03): 78-82.
[6] 李伟, 张正桥, 徐珍珍, 张朝辉. 双亲两嵌段接枝淀粉浆料的制备及其上浆性能[J]. 纺织学报, 2022, 43(01): 141-146.
[7] 任维佳, 杜玉红, 左恒力, 袁汝旺. 棉花中异性纤维检测图像分割和边缘检测方法研究进展[J]. 纺织学报, 2021, 42(12): 196-204.
[8] 王博文, 林森明, 岳晓丽, 钟毅, 陈慧敏. 织物喷雾上浆雾化质量评价[J]. 纺织学报, 2021, 42(12): 90-96.
[9] 郭敏, 高卫东, 朱博, 刘建立, 郭明瑞. 模拟织造状态下的浆纱耐磨性能测试方法[J]. 纺织学报, 2021, 42(11): 46-50.
[10] 杨雯静, 武海良, 马建华, 姚一军, 沈艳琴. 毛纱上浆用丁二酸酐酰化明胶浆料的制备及其性能[J]. 纺织学报, 2021, 42(04): 93-100.
[11] 李伟, 张正桥, 吴兰娟, 刘倩, 魏安方, 程雪冬, 王太冉. 亚甲基丁二酸交联变性对淀粉浆料性能的影响[J]. 纺织学报, 2021, 42(03): 110-114.
[12] 张文昌, 单忠德, 卢影. 基于机器视觉的纱笼纱杆快速定位方法[J]. 纺织学报, 2020, 41(12): 137-143.
[13] 李伟, 张正桥, 吴兰娟, 吴杰, 祝志峰. 双亲性淀粉浆料的研究进展[J]. 纺织学报, 2020, 41(07): 182-187.
[14] 张建新, 李琦. 基于机器视觉的筒子纱密度在线检测系统[J]. 纺织学报, 2020, 41(06): 141-146.
[15] 李伟, 景元炜, 张正桥, 倪庆清, 徐珍珍, 刘新华. 己酸酯淀粉的制备及其上浆性能[J]. 纺织学报, 2020, 41(06): 76-80.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!