纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 87-92.doi: 10.13475/j.fzxb.20211006006

• 纤维材料 • 上一篇    下一篇

基于超临界二氧化碳的高效低阻聚丙烯熔喷纤维制备及其性能

谭林立1,2(), 秦柳1,2,3, 李英儒1,2, 邓伶俐1,2, 谢知音1,2, 李时东1,2   

  1. 1.湖北民族大学 智能科学与工程学院, 湖北 恩施 445000
    2.湖北民族大学 超轻弹性体材料绿色制造国家民委重点实验室, 湖北 恩施 445000
    3.宁波格林美孚新材料科技有限公司, 浙江 宁波 315300
  • 收稿日期:2021-10-26 修回日期:2022-05-26 出版日期:2023-01-15 发布日期:2023-02-16
  • 作者简介:谭林立(1987—),男,讲师,博士。主要研究方向为微纳米纤维的绿色制备。E-mail:2019042@hbmzu.edu.cn
  • 基金资助:
    湖北省重点研发计划项目(2020BAB078);湖北省教育厅中青年人才项目(Q20201901);湖北省教育厅团队项目(T2021013);超轻弹性体材料绿色制造国家民委重点实验室开放基金项目(MY2020Z001);湖北民族大学校内培育项目(PY20026);国家自然科学基金项目(32160610)

Preparation and performance of high efficiency and low resistance polypropylene melt-blown fiber based on supercritical carbon dioxide

TAN Linli1,2(), QIN Liu1,2,3, LI Yingru1,2, DENG Lingli1,2, XIE Zhiyin1,2, LI Shidong1,2   

  1. 1. College of Intelligent Systems Science and Technology, Hubei Minzu University, Enshi, Hubei 445000, China
    2. Key Laboratory of Green Manufacturing of Super-Light Elastomer Materials of State Ethnic Affairs Commission, Enshi, Hubei 445000,China
    3. Ningbo GMF New Material Technology Co., Ltd., Ningbo, Zhejiang 315300, China
  • Received:2021-10-26 Revised:2022-05-26 Published:2023-01-15 Online:2023-02-16

摘要:

为降低聚丙烯(PP)熔喷纤维的直径,解决其在空气过滤过程中过滤效率和过滤阻力之间的矛盾,借助静电场和超临界二氧化碳协同静电场制备PP熔喷纤维,并对PP纤维的形貌、过滤性能、力学性能进行表征与分析。结果表明:在制备过程中添加静电场后,PP纤维的平均直径从3.22 μm降低至2.44 μm,在此基础上经超临界二氧化碳处理后PP纤维的平均直径进一步降低至1.73 μm,最小纤维直径达780 nm;随着纤维直径的降低,PP纤维直径分布变窄,纤维间黏结点减少,孔隙率和比表面积增加,微纳米纤维的过滤效率和过滤阻力均得到明显改善,其对0.3 μm的颗粒物过滤效率高达99.25%,32 L/min气流量下过滤阻力仅为23 Pa。

关键词: 聚丙烯, 静电场, 超临界二氧化碳, 微纳米纤维, 熔喷纤维, 过滤性能

Abstract:

Objective This work was carried out to reduce the diameter of melt-blown polypropylene (PP) fabric and to solve the contradiction between filtration efficiency and filtration resistance of the melt-blown fabric during air filtration.
Method Two types of novel PP superfine melt-blown fiber were prepared. One was prepared by melt-blowing assisted by electrostatic field, and the other was prepared by firstly treating PP with supercritical carbon dioxide and then melt-blowing assisted by electrostatic field.
Results PP melt-blown fiber was prepared by melt-blowing assisted by electrostatic field. The fiber was thinned, the average diameter of the fiber was decreased from 3.22 μm to 2.44 μm by about 24.2%, and the filtration efficiency was increased from 98.78% to 99.01%. After supercritical CO2 treatment, the viscosity of PP melt decreased, and the average diameter of the fiber was further decreased to 1.73 μm with the minimum diameter of 780 nm under the synergistic effect between electrostatic field and airflow field. With the decrease of the fiber diameter, the fiber diameter distribution became narrower, the bond point between fibers was decreased, the porosity and specific surface area were increased, and the fiber was more likely to capture the charge generated by corona discharge in the electret process, significantly improving the barrier capability and air permeability of micro-nano fiber. In other words, the contradiction between filtration efficiency and filtration resistance was effectively overcome. The filtration efficiency of the prepared melt-blown fiber was 99.25% for 0.3 μm particles, the filtration resistance was only 23 Pa, with a satisfactory quality factor of 0.213 Pa-1. Compared with ordinary PP melt-blowing fiber, the breaking strength of melt-blown fiber prepared assisted by only electrostatic field or the combination of supercritical CO2 treatment and electrostatic field decreased from 2.12 MPa of conventional melt-blown fiber to 1.17 and 1.26 MPa, representing decrease rates of about 44.8% and 40.0%, respectively. The elongation at break was significantly improved, and the decrease of the breaking strength was mainly attributed to the decrease of fiber diameter. In addition, the effective bonding points between fibers became fewer, leading to further reduction in fiber strength.
Conclusion Two types of novel PP superfine melt-blown fiber were prepared, by melt-blowing assisted by electrostatic field and by melt-blowing assisted by electrostatic field following the fiber treatment by supercritical carbon dioxide. Thanks to the synergistic effect of supercritical carbon dioxide pre-treatment and the assistance of electrostatic field, the prepared melt-blowing fiber shows good barrier capability as well as good air permeability. The contradiction between filtration efficiency and filtration resistance of melt-blown fiber in the process of air filtration is effectively solved.

Key words: polypropylene, electrostatic field, supercritical carbon dioxide, micro-nano fiber, melt-blown fiber, filtration performance

中图分类号: 

  • TS176

图1

实验装置示意图"

图2

不同工艺制备纤维的表面微观结构(×1 000)"

图3

不同工艺制备纤维的直径分布"

表1

纤维对不同粒径颗粒物的过滤效率"

制备条件 不同粒径颗粒物的过滤效率/%
0.3 μm 0.5 μm 1.0 μm 2.5 μm
常规纺丝 98.78 99.00 100.00 100.00
静电场 99.01 99.23 100.00 100.00
超临界CO2协同静电场 99.25 99.54 100.00 100.00

表2

纤维特征参数测试结果"

制备条件 孔隙
率/%
平均孔
径/μm
过滤阻力/Pa 品质因
子/Pa-1
32 L/min 85 L/min
常规纺丝 68.10 14.86 55 148 0.080
静电场 70.05 13.79 51 134 0.091
超临界CO2
协同静电场
72.00 12.95 23 84 0.213

表3

代表性空气过滤纤维过滤性能对比"

原料 制备方法 过滤效
率/%
过滤阻
力/Pa
品质因
子/Pa-1
参考
文献
PP 熔体静电纺 99.23 8.60 0.566 [4]
PP/ATBC 熔体静电纺 99.95 195.20 0.039 [17]
PP/PS 熔喷 99.87 37.73 0.176 [5]
PP/PEG 熔喷 85.33 55.53 0.035 [11]
PP 熔喷协同
静电场
99.25 23.00 0.213 本文

表4

纤维的力学性能"

制备条件 断裂伸长率/% 断裂强度/MPa
常规纺丝 18.38 2.12
静电场 22.50 1.17
超临界CO2协同静电场 44.81 1.26
[1] LIU Hui, ZHANG Shichao, LIU Lifang, et al. High-performance PM0.3 air filters using self polarized electret nanofiber/nets[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.201909554.
doi: 10.1002/adfm.201909554
[2] LIU Chong, HSU Pochun, LEE Hyunwook, et al. Transparent air filter for high-efficiency PM2.5 capture[J]. Nature Communications, 2015, 6 : 1-9.
[3] XUE Jiajia, WU TONG, DAI Yunqian, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8) : 5298-5415.
doi: 10.1021/acs.chemrev.8b00593 pmid: 30916938
[4] 杜琳, 张有忱, 杨卫民, 等. 熔体微分静电纺聚丙烯空气驻极体滤膜的制备及其性能[J]. 纺织学报, 2018, 39(10) : 12-17.
DU Lin, ZHANG Youchen, YANG Weimin, et al. Preparation and properties of polypropylene air filter membrane by melt differential electrospinning[J]. Journal of Textile Research, 2018, 39(10) : 12-17.
[5] DENG Nanping, HE Hongsheng, YAN Jing, et al. One-step melt-blowing of multi-scale micro/nano fabric membrane for advanced air-filtration[J]. Polymer, 2019, 165: 174-179.
doi: 10.1016/j.polymer.2019.01.035
[6] 周惠林, 杨卫民, 李好义. 医用口罩过滤材料的研究进展[J]. 纺织学报, 2020, 41(8) : 158-165.
ZHOU Huilin, YANG Weimin, LI Haoyi. Research progress of filtering material for medical mask[J]. Journal of Textile Research, 2020, 41(8) : 158-165.
doi: 10.1177/004051757104100212
[7] ZHANG Kai, LI Zongjie, KANG Weimin, et al. Preparation and characterization of tree-like cellulose nanofiber membranes via the electrospinning method[J]. Carbohydrate Polymers, 2018, 183: 62-69.
doi: S0144-8617(17)31308-5 pmid: 29352893
[8] LI Zongjie, KANG Weimin, ZHAO Huihui, et al. A novel polyvinylidene fluoride tree-like nanofiber membrane for microfiltration[J]. Nanomaterials, 2016, 6 : 1-11.
doi: 10.3390/nano6010001
[9] LI Zongjie, KANG Weimin, ZHAO Huihui, et al. Fabrication of polyvinylidene fluoride tree-like nanofiber web for ultra high performance air filtration[J]. RSC Advances, 2016(6):1-7.
[10] 甄琪, 张恒, 朱斐超, 等. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(2) : 26-32.
ZHEN Qi, ZHANG Heng, ZHU Feichao, et al. Fabrication and properties of polypropylene/polyester bicomponent micro-nanofiber webs via melt blowing process[J]. Journal of Textile Research, 2020, 41(2): 26-32.
[11] 张恒, 甄琪, 刘雍, 等. 仿生水平分支结构聚乙二醇/聚丙烯超细纤维制备及其液体水平扩散性能[J]. 纺织学报, 2018, 39(12) : 18-23.
ZHANG Heng, ZHEN Qi, LIU Yong, et al. Preparation and liquid horizontal diffusion properties of polyethylene glycol /polypropylene microfibers with bionic horizontal branched structure[J]. Journal of Textile Research, 2018, 39(12) : 18-23.
[12] ZHANG Heng, ZHEN Qi, LIU Yong, et al. One-step melt blowing process for PP/PEG micro-nanofiber filters with branch networks[J]. Results in Physics, 2019, 12 : 1421-1428.
doi: 10.1016/j.rinp.2019.01.012
[13] ZHOU Yanfen, JIANG Liang, JIA Huiying, et al. Study on spinnability of PP/PU blends and preparation of PP/PU bi-component melt blown nonwovens[J]. Fibers and Polymers, 2019, 20 : 1200-1207.
doi: 10.1007/s12221-019-8111-0
[14] DHARMARAJ Selvakumar, ASHOKKUMAR Veeram-uthu, HARIHARAN Sneha, et al. The COVID-19 pandemic face mask waste: a blooming threat to the marine environment[J]. Chemosphere, 2021, 272:1-20.
[15] 陈明钟, 杨卫民, 李好义, 等. 基于超临界CO2制备熔体微分静电纺聚丙烯纤维[J]. 中国塑料, 2016, 30(6) : 70-73.
CHEN Mingzhong, YANG Weimin, LI Haoyi, et al. Properties of PP fibers prepared by melt differential electrospinning with supercritical CO2[J]. China Plastics, 2016, 30(6) : 70-73.
[16] ZHANG Shichao, LIU Hui, TANG Ning, et al. Spider web-inspired PM0.3 filters based on self-sustained electrostatic nanostructured networks[J]. Advanced Materials, 2020, 32:1-8.
[17] 杜琳, 李好义, 王紫行, 等. 熔体微分电纺PLA/ATBC空气滤膜的制备及性能[J]. 化工新型材料, 2019, 47(12): 82-86.
DU Lin, LI Haoyi, WANG Zhihang, et al. Preparation and air filting performance of PLA/ATBC nanofiber film by melt differential electrospinning[J]. New Chemical Materials, 2019, 47(12) :82-86.
[1] 韩万里, 谢胜, 王新厚, 王玉栋. 熔喷气流场中的纤维运动模拟与分析[J]. 纺织学报, 2023, 44(01): 93-99.
[2] 吴燕金, 王江, 王洪. 水驻极聚丙烯熔喷非织造材料的制备及其带电特性分析[J]. 纺织学报, 2022, 43(12): 29-34.
[3] 张天芸, 石小红, 张乐, 王富娟, 谢依娜, 杨亮, 冉奋. 基于离子液体协同法的双交联结构细菌纤维素/聚丙烯酰胺凝胶聚合物电解质构建[J]. 纺织学报, 2022, 43(11): 22-28.
[4] 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9.
[5] 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155.
[6] 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100.
[7] 梁姣姣, 汪菁晶, 夏于旻, 朱新远, 闫冰, 孙利明, 王燕萍, 何勇, 王依民. 基于聚离子液体的常压阴离子可染聚丙烯纤维制备及其性能[J]. 纺织学报, 2022, 43(07): 17-21.
[8] 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93.
[9] 王茜, 乔燕莎, 王君硕, 李彦, 王璐. 金属酚醛/两性离子聚合物涂层聚丙烯补片的制备及其抗蛋白吸附性能[J]. 纺织学报, 2022, 43(06): 9-14.
[10] 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69.
[11] 李兴兴, 李琴, 岳甜甜, 刘宇清. 微纳米纤维素材料的微流控制备技术研究进展[J]. 纺织学报, 2022, 43(04): 180-186.
[12] 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63.
[13] 赵家明, 孙辉, 于斌, 杨潇东. CuO/聚丙烯/乙烯-辛烯共聚物复合熔喷非织造材料的制备及其吸油性能[J]. 纺织学报, 2022, 43(02): 89-97.
[14] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[15] 朱斐超, 张宇静, 张强, 叶翔宇, 张恒, 汪伦合, 黄瑞杰, 刘国金, 于斌. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(01): 49-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[2] 张金秋;张华;郝新敏;姜凤琴. 大麻纤维高温煮练时间与脱胶质量的关系[J]. 纺织学报, 2006, 27(2): 81 -83 .
[3] 吕荣文;高崑玉. 超细纤维用分散染料染色性能研究[J]. 纺织学报, 2004, 25(04): 60 -61 .
[4] 陈维国;戴瑾瑾;王俊苏;贾成通;汪智勇;孟照成. 高耐光色牢度还原染料对涤纶织物的热熔法染色[J]. 纺织学报, 2008, 29(9): 82 -86 .
[5] 李重;. 双圆弧在服装纸样设计中的应用[J]. 纺织学报, 2005, 26(5): 101 -102 .
[6] 崔毅华. 玄武岩连续纤维的基本特性[J]. 纺织学报, 2005, 26(5): 120 -121 .
[7] 李发学;张广平;吴丽莉;俞建勇. 三羟甲基乙烷/新戊二醇二元体系的DSC研究[J]. 纺织学报, 2004, 25(05): 59 -60 .
[8] 周赳;吴文正. 有彩数码提花织物的创新设计原理和方法[J]. 纺织学报, 2006, 27(5): 6 -9 .
[9] 李利君;蒲宗耀;李风;王桦;兰彬. 聚苯硫醚纤维的热降解动力学[J]. 纺织学报, 2010, 31(12): 4 -8 .
[10] 焦亚男;李嘉禄. 异制件用三维编织复合材料的拉伸性能[J]. 纺织学报, 2006, 27(9): 1 -4 .