纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 87-92.doi: 10.13475/j.fzxb.20211006006
谭林立1,2(), 秦柳1,2,3, 李英儒1,2, 邓伶俐1,2, 谢知音1,2, 李时东1,2
TAN Linli1,2(), QIN Liu1,2,3, LI Yingru1,2, DENG Lingli1,2, XIE Zhiyin1,2, LI Shidong1,2
摘要:
为降低聚丙烯(PP)熔喷纤维的直径,解决其在空气过滤过程中过滤效率和过滤阻力之间的矛盾,借助静电场和超临界二氧化碳协同静电场制备PP熔喷纤维,并对PP纤维的形貌、过滤性能、力学性能进行表征与分析。结果表明:在制备过程中添加静电场后,PP纤维的平均直径从3.22 μm降低至2.44 μm,在此基础上经超临界二氧化碳处理后PP纤维的平均直径进一步降低至1.73 μm,最小纤维直径达780 nm;随着纤维直径的降低,PP纤维直径分布变窄,纤维间黏结点减少,孔隙率和比表面积增加,微纳米纤维的过滤效率和过滤阻力均得到明显改善,其对0.3 μm的颗粒物过滤效率高达99.25%,32 L/min气流量下过滤阻力仅为23 Pa。
中图分类号:
[1] |
LIU Hui, ZHANG Shichao, LIU Lifang, et al. High-performance PM0.3 air filters using self polarized electret nanofiber/nets[J]. Advanced Functional Materials, 2020. DOI: 10.1002/adfm.201909554.
doi: 10.1002/adfm.201909554 |
[2] | LIU Chong, HSU Pochun, LEE Hyunwook, et al. Transparent air filter for high-efficiency PM2.5 capture[J]. Nature Communications, 2015, 6 : 1-9. |
[3] |
XUE Jiajia, WU TONG, DAI Yunqian, et al. Electrospinning and electrospun nanofibers: methods, materials, and applications[J]. Chemical Reviews, 2019, 119(8) : 5298-5415.
doi: 10.1021/acs.chemrev.8b00593 pmid: 30916938 |
[4] | 杜琳, 张有忱, 杨卫民, 等. 熔体微分静电纺聚丙烯空气驻极体滤膜的制备及其性能[J]. 纺织学报, 2018, 39(10) : 12-17. |
DU Lin, ZHANG Youchen, YANG Weimin, et al. Preparation and properties of polypropylene air filter membrane by melt differential electrospinning[J]. Journal of Textile Research, 2018, 39(10) : 12-17. | |
[5] |
DENG Nanping, HE Hongsheng, YAN Jing, et al. One-step melt-blowing of multi-scale micro/nano fabric membrane for advanced air-filtration[J]. Polymer, 2019, 165: 174-179.
doi: 10.1016/j.polymer.2019.01.035 |
[6] | 周惠林, 杨卫民, 李好义. 医用口罩过滤材料的研究进展[J]. 纺织学报, 2020, 41(8) : 158-165. |
ZHOU Huilin, YANG Weimin, LI Haoyi. Research progress of filtering material for medical mask[J]. Journal of Textile Research, 2020, 41(8) : 158-165.
doi: 10.1177/004051757104100212 |
|
[7] |
ZHANG Kai, LI Zongjie, KANG Weimin, et al. Preparation and characterization of tree-like cellulose nanofiber membranes via the electrospinning method[J]. Carbohydrate Polymers, 2018, 183: 62-69.
doi: S0144-8617(17)31308-5 pmid: 29352893 |
[8] |
LI Zongjie, KANG Weimin, ZHAO Huihui, et al. A novel polyvinylidene fluoride tree-like nanofiber membrane for microfiltration[J]. Nanomaterials, 2016, 6 : 1-11.
doi: 10.3390/nano6010001 |
[9] | LI Zongjie, KANG Weimin, ZHAO Huihui, et al. Fabrication of polyvinylidene fluoride tree-like nanofiber web for ultra high performance air filtration[J]. RSC Advances, 2016(6):1-7. |
[10] | 甄琪, 张恒, 朱斐超, 等. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(2) : 26-32. |
ZHEN Qi, ZHANG Heng, ZHU Feichao, et al. Fabrication and properties of polypropylene/polyester bicomponent micro-nanofiber webs via melt blowing process[J]. Journal of Textile Research, 2020, 41(2): 26-32. | |
[11] | 张恒, 甄琪, 刘雍, 等. 仿生水平分支结构聚乙二醇/聚丙烯超细纤维制备及其液体水平扩散性能[J]. 纺织学报, 2018, 39(12) : 18-23. |
ZHANG Heng, ZHEN Qi, LIU Yong, et al. Preparation and liquid horizontal diffusion properties of polyethylene glycol /polypropylene microfibers with bionic horizontal branched structure[J]. Journal of Textile Research, 2018, 39(12) : 18-23. | |
[12] |
ZHANG Heng, ZHEN Qi, LIU Yong, et al. One-step melt blowing process for PP/PEG micro-nanofiber filters with branch networks[J]. Results in Physics, 2019, 12 : 1421-1428.
doi: 10.1016/j.rinp.2019.01.012 |
[13] |
ZHOU Yanfen, JIANG Liang, JIA Huiying, et al. Study on spinnability of PP/PU blends and preparation of PP/PU bi-component melt blown nonwovens[J]. Fibers and Polymers, 2019, 20 : 1200-1207.
doi: 10.1007/s12221-019-8111-0 |
[14] | DHARMARAJ Selvakumar, ASHOKKUMAR Veeram-uthu, HARIHARAN Sneha, et al. The COVID-19 pandemic face mask waste: a blooming threat to the marine environment[J]. Chemosphere, 2021, 272:1-20. |
[15] | 陈明钟, 杨卫民, 李好义, 等. 基于超临界CO2制备熔体微分静电纺聚丙烯纤维[J]. 中国塑料, 2016, 30(6) : 70-73. |
CHEN Mingzhong, YANG Weimin, LI Haoyi, et al. Properties of PP fibers prepared by melt differential electrospinning with supercritical CO2[J]. China Plastics, 2016, 30(6) : 70-73. | |
[16] | ZHANG Shichao, LIU Hui, TANG Ning, et al. Spider web-inspired PM0.3 filters based on self-sustained electrostatic nanostructured networks[J]. Advanced Materials, 2020, 32:1-8. |
[17] | 杜琳, 李好义, 王紫行, 等. 熔体微分电纺PLA/ATBC空气滤膜的制备及性能[J]. 化工新型材料, 2019, 47(12): 82-86. |
DU Lin, LI Haoyi, WANG Zhihang, et al. Preparation and air filting performance of PLA/ATBC nanofiber film by melt differential electrospinning[J]. New Chemical Materials, 2019, 47(12) :82-86. |
[1] | 韩万里, 谢胜, 王新厚, 王玉栋. 熔喷气流场中的纤维运动模拟与分析[J]. 纺织学报, 2023, 44(01): 93-99. |
[2] | 吴燕金, 王江, 王洪. 水驻极聚丙烯熔喷非织造材料的制备及其带电特性分析[J]. 纺织学报, 2022, 43(12): 29-34. |
[3] | 张天芸, 石小红, 张乐, 王富娟, 谢依娜, 杨亮, 冉奋. 基于离子液体协同法的双交联结构细菌纤维素/聚丙烯酰胺凝胶聚合物电解质构建[J]. 纺织学报, 2022, 43(11): 22-28. |
[4] | 姚莹, 赵为陶, 张德锁, 林红, 陈宇岳, 魏红. 超支化季铵盐诱导制备树枝状纳米纤维膜及其性能[J]. 纺织学报, 2022, 43(10): 1-9. |
[5] | 杨丽, 王涛, 石现兵, 韩振邦. 改性聚丙烯腈纤维负载MoSx/TiO2光催化材料制备及其降解染料性能[J]. 纺织学报, 2022, 43(09): 149-155. |
[6] | 胡铖烨, 周歆如, 范梦晶, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 皮芯结构微纳米纤维复合纱线的制备及其性能[J]. 纺织学报, 2022, 43(09): 95-100. |
[7] | 梁姣姣, 汪菁晶, 夏于旻, 朱新远, 闫冰, 孙利明, 王燕萍, 何勇, 王依民. 基于聚离子液体的常压阴离子可染聚丙烯纤维制备及其性能[J]. 纺织学报, 2022, 43(07): 17-21. |
[8] | 孙焕惟, 张恒, 崔景强, 朱斐超, 王国锋, 苏天阳, 甄琪. 聚乳酸非织造材料的后牵伸辅助熔喷成形工艺及其力学性能[J]. 纺织学报, 2022, 43(06): 86-93. |
[9] | 王茜, 乔燕莎, 王君硕, 李彦, 王璐. 金属酚醛/两性离子聚合物涂层聚丙烯补片的制备及其抗蛋白吸附性能[J]. 纺织学报, 2022, 43(06): 9-14. |
[10] | 陈锋, 姬忠礼, 于文瀚, 董伍强, 王倩琳, 王德国. 纳米纤维膜润湿性对三明治结构复合过滤材料气液过滤性能的影响[J]. 纺织学报, 2022, 43(05): 63-69. |
[11] | 李兴兴, 李琴, 岳甜甜, 刘宇清. 微纳米纤维素材料的微流控制备技术研究进展[J]. 纺织学报, 2022, 43(04): 180-186. |
[12] | 邓杨, 石现兵, 王涛, 刘利伟, 韩振邦. 负载MIL-53(Fe)的改性聚丙烯腈纤维光催化剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 58-63. |
[13] | 赵家明, 孙辉, 于斌, 杨潇东. CuO/聚丙烯/乙烯-辛烯共聚物复合熔喷非织造材料的制备及其吸油性能[J]. 纺织学报, 2022, 43(02): 89-97. |
[14] | 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73. |
[15] | 朱斐超, 张宇静, 张强, 叶翔宇, 张恒, 汪伦合, 黄瑞杰, 刘国金, 于斌. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(01): 49-57. |
|