纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 188-193.doi: 10.13475/j.fzxb.20211006906
LÜ Jindan1,2, CHENG Longdi1,2()
摘要:
针对气流槽聚纺纱不同集聚凹槽形状对成纱性能的影响,建立集聚区域三维模型,利用Fluent软件模拟不同凹槽结构的气流槽聚装置集聚区域的流场分布,比较其气流流场的特点。模拟结果表明:在相同负压条件下,非对称凹槽气流槽聚装置的气流利用率高,负压气流方向和集聚方向的速度分别为48.3、24.5 m/s,可有效握持和集聚纤维束,使得输出的须条能够最大程度地集聚,纤维也尽可能多地集中成为主体纤维束,有利于减少毛羽。通过测试所纺27.78 tex苎麻纱的成纱性能,验证非对称凹槽的集聚性能以及集聚气流对成纱性的影响。实验结果表明:采用非对称凹槽集聚装置纺制的纱线毛羽比环锭纺减少了77.58%,成纱强力比环锭纺提高了14.32%,成纱性能显著提高。
中图分类号:
[1] | 郭臻, 李新荣, 王楠, 等. 环锭纺纱新技术的对比分析[J]. 纺织器材, 2019, 46(5):56-60. |
GUO Zhen, LI Xinrong, WANG Nan, et al. Comparative analysis of new technology of ring spinning[J]. Textile Accessories, 2019, 46(5):56-60. | |
[2] |
YIN R, LING Y L, FISHER R, et al. Viable approaches to increase the throughput of ring spinning: a critical review[J]. Journal of Cleaner Production, 2021. DOI: 10.1016/j.jclepro.2021.129116.
doi: 10.1016/j.jclepro.2021.129116 |
[3] | 韩晨晨, 罗彩鸿, 高卫东. 两种新型纺纱技术的发展现状[J]. 棉纺织技术, 2021, 49(11): 1-4. |
HAN Chenchen, LUO Caihong, GAO Weidong. The development status of two new spinning technologies[J]. Cotton Textile Technology, 2021, 49(11): 1-4. | |
[4] | 邹专勇. 基于流场模拟的喷气涡流纺成纱工艺与纱线结构的相关性研究[D]. 上海: 东华大学, 2010: 24-29. |
ZOU Zhuanyong. Study on the correlation between the yarn formation process and tis structure based on flow field simulation in air-jet vortex spinning[D]. Shanghai: Donghua University, 2010: 24-29. | |
[5] | W Kampen, 陈廷, 李毓陵. 聚集纺纱的优点[J]. 国际纺织导报, 2000(3):11-14. |
KAMPEN W, CHEN Ting, LI Yuling. Advantages of compact spinning[J]. Melliand China, 2000(3):11-14. | |
[6] | 程隆棣, 王静, 薛文良, 等. 吸气槽聚型集聚纺纱技术初探[J]. 上海纺织科技, 2004(1):13-14. |
CHENG Longdi, WANG Jing, XUE Wenliang, et al. Study on compact spinning with inspiratory trough-like roller[J]. Shanghai Textile Science & Technology, 2004(1):13-14. | |
[7] | ALMETWALLY A A, MOURAD M M, HEBEISH A A, et al. Comparison between physical properties of ring-spun yarn and compact yarns spun from different pneumatic compacting systems[J]. Indian Journal of Fibre & Textile Research, 2015, 40(1):43-50. |
[8] |
SU X Z, LIU X, LIU X Y. Numerical simulation of flow field in the pneumatic compact spinning systems using Finite Element Method[J]. International Journal of Clothing Science and Technology, 2018, 30(3):363-379.
doi: 10.1108/IJCST-11-2017-0180 |
[9] | 竺韵德, 俞建勇, 许强, 等. 钻孔皮圈集聚纺纱系统三维流场的模拟与分析[J]. 纺织学报, 2009, 30(4):111-116. |
ZHU Yunde, YU Jianyong, XU Qiang, et al. Simulation and analysis of three-dimensional flow field in punched apron compact spinning[J]. Journal of Textile Research, 2009, 30(4):111-116. | |
[10] | 邹专勇, 汪燕, 俞建勇, 等. 网格圈集聚纺纱系统三维流场表征与分析[J]. 纺织学报, 2009, 30(6):24-28. |
ZOU Zhuanyong, WANG Yan, YU Jianyong, et al. Characterization and analysis of three-dimensional flow field in compact spinning with lattice apron[J]. Journal of Textile Research, 2009, 30(6):24-28. | |
[11] |
LIU X J, ZHANG H, SU X Z. Comparative analysis on pneumatic compact spinning systems[J]. International Journal of Clothing Science and Technology, 2016, 28(4): 400-419.
doi: 10.1108/IJCST-09-2015-0104 |
[12] | XUE W L, WEI M Y, WANG Y, et al. Comparison of flow field distribution and characteristic on different compact spinning systems[J]. Journal of Donghua University(English Edition), 2011, 28(3):326-330. |
[13] | 苏旭中, 杨世奎, 谢春萍, 等. 集聚槽倾角对紧密纱质量的影响[J]. 棉纺织技术, 2010, 38(1):15-17. |
SU Xuzhong, YANG Shikui, XIE Chunping, et al. Effect of condensing groove angle on compact yarn quality[J]. Cotton Textile Technology, 2010, 38(1): 15-17. | |
[14] | 薛文良. 气流作用下紧密纺纱线的成形机理及结构研究[D]. 上海: 东华大学, 2012: 39-48. |
XUE Wenliang. Study on compact spinning principle and yarn structure in airflow[D]. Shanghai: Donghua University, 2012: 39-48. | |
[15] | 程隆棣, 顾肇文, 裘永清, 等. 集聚纺纱技术研究[J]. 上海纺织科技, 2005(2):15-17,24. |
CHENG Longdi, GU Zhaowen, QIU Yongqing, et al. Technology research on compact spinning[J]. Shanghai Textile Science & Technology, 2005(2):15-17,24. | |
[16] | 黄梦岚, 程隆棣, 俞建勇, 等. 两种气流槽聚式集聚纺纱集聚区气流场的数值模拟[J]. 东华大学学报(自然科学版), 2016, 42(3):370-373. |
HUANG Menglan, CHENG Longdi, YU Jianyong, et al. Numerical simulation of flow field in condensing zone of two compact spinning systems with inspiratory groove[J]. Journal of Donghua University (Nature Science), 2016, 42(3):370-373. | |
[17] | 陆世麟, 马洪才, 程隆棣. 气流槽聚型长纤维紧密集聚纺纱系统流场模拟与分析[J]. 东华大学学报(自然科学版), 2012, 38(1):16-20. |
LU Shilin, MA Hongcai, CHENG Longdi. Simulation and analysis of flow field in compact spinning system with inspiratory groove of long staple[J]. Journal of Donghua University (Nature Science), 2012, 38(1):16-20. | |
[18] | GAO J X, ZOU Z Y, CHENG L D. Study on airflow field of condensing zone in compact spinning system with perforated drum[J]. Journal of Donghua University(English Edition), 2010, 27(5):606-609. |
[1] | 史倩倩, 高备, 林惠婷, 张玉泽, 汪军. 传统型与双喂给转杯纺纺纱器及其成纱性能对比[J]. 纺织学报, 2019, 40(02): 63-68. |
[2] | 韩晨晨 程隆棣 高卫东 薛元 薛文良 杨瑞华 . 传统型与自捻型喷气涡流纺的对比[J]. 纺织学报, 2018, 39(01): 25-31. |
[3] | 马小路 李好义 谭晶 阎华 张莉彦. 硬脂酸及辅助气流对熔体微分静电纺的影响[J]. 纺织学报, 2016, 37(10): 8-12. |
[4] | 包西平 刘宜胜 吴震宇. 折入孔位置对纯气动毛边折入装置流场的影响[J]. 纺织学报, 2016, 37(08): 125-131. |
[5] | 付江;于伟东. 假捻集聚纺纱方法中基本工艺参数的作用分析[J]. 纺织学报, 2011, 32(5): 38-42. |
|