纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 141-147.doi: 10.13475/j.fzxb.20211007807

• 服装工程 • 上一篇    下一篇

蒸发型降温服的降温性能研究

陈莹1, 宋泽涛2, 郑晓慧3, 姜延4, 常素芹2()   

  1. 1.北京服装学院 服装艺术与工程学院, 北京 100029
    2.北京服装学院 材料设计与工程学院, 北京 100029
    3.军事科学院 防化研究院, 北京 100191
    4.北京服装学院 文理学院, 北京 100029
  • 收稿日期:2021-10-29 修回日期:2022-08-04 出版日期:2022-11-15 发布日期:2022-12-26
  • 通讯作者: 常素芹
  • 作者简介:陈莹(1996—),女,硕士生。主要研究方向为服装工效学。
  • 基金资助:
    北京学者计划项目(RCQJ20303)

Study on cooling performance of evaporative cooling garment

CHEN Ying1, SONG Zetao2, ZHENG Xiaohui3, JIANG Yan4, CHANG Suqin2()   

  1. 1. School of Fashion, Beijing Institute of Fashion Technology, Beijing 100029, China
    2. School of Materials Design and Engineering, Beijing Institute of Fashion Technology, Beijing 100029, China
    3. Research Institute of Chemical Defense, Military Seience Academy, Beijing 100191, China
    4. College of Arts and Sciences, Beijing Institute of Fashion Technology, Beijing 100029, China
  • Received:2021-10-29 Revised:2022-08-04 Published:2022-11-15 Online:2022-12-26
  • Contact: CHANG Suqin

摘要:

为缓解高温环境下作业人员的热应激,利用高分子蓄冷材料设计降温服。通过模拟热环境(34 ℃),利用恒功率控制干态暖体假人,选择3个劳动强度水平(即20、200和300 W/m2)和3个相对湿度水平(即20%、50%和80%)对该降温服的降温性能进行系统的研究。结果表明:该降温服能降低假人的皮肤温度,各部位皮肤温度最大降温梯度为3.4 ℃,最大初期降温速度为0.081 ℃/min;劳动强度对降温服的有效降温时长存在显著影响,在所选劳动强度下的躯干有效降温时长分别为大于420、165和102 min;相对湿度对降温服的降温梯度存在显著影响,在所选相对湿度水平下的躯干降温梯度分别为1.8、1.2和0.4 ℃。该蒸发型降温服降温过程缓和,无骤冷、过冷现象,适合中等劳动强度、中等相对湿度环境下穿着。

关键词: 蒸发型, 降温服, 劳动强度, 相对湿度, 皮肤温度

Abstract:

In order to migrate heat strain on workers in the heat, a cooling garment was designed using polymeric cooling storage materials. In a simulated hot environment (temperature 34 ℃), three levels of work intensity (20, 200, and 300 W/m2) and three levels of relative humidity (20%, 50%, and 80%) were selected for systematically evaluating the cooling performance of the cooling garment utilizing dry thermal manikin controlled constant power. Results show that cooling garment is able to lower skin temperature, and for all local skin temperatures, the maximum cooling gradient is 3.4 ℃ and the maximum cooling rate is 0.081 ℃/min. Work intensity has a significant effect on effective cooling time, which for the torso under the selected work intensities were over 420, 165 and 102 min, respectively. Relative humidity has a significant effect on cooling gradient, and the cooling gradient of torso under the selected relative humidities were 1.8,1.2 and 0.4 ℃, respectively. Evaporative cooling garment has a mild cooling process, without sudden cooling and over cooling, which makes it suitable for wearing under moderate work intensity and moderate humidity conditions.

Key words: evaporative, cooling garment, work intensity, relative humidity, skin temperature

中图分类号: 

  • TS941.17

图1

降温服款式图"

图2

降温服实物图"

图3

劳动强度对局部皮肤温度的影响"

图4

劳动强度对躯干温度的影响"

表1

不同劳动强度对降温服局部降温性能的影响"

劳动强
度/(W·
m-2)
部位 降温梯
度/℃
温度最低
点时间/
min
有效降温
时长/
min
皮肤温度
变化速度/
(℃·min-1)
舒适降
漏时长/
min
20 胸部 3.0 37 >420 0.081 75
肩部 3.4 45 >420 0.076 74
腹部 2.1 48 >420 0.044 711
背部 2.5 87 >420 0.029 714
躯干 2.7 49 >420 0.055 77
200 胸部 2.1* 30 194* 0.070 82
肩部 2.6* 36 208* 0.072 128
腹部 0.8* 33 96* 0.024 0
背部 1.2 57* 175# 0.021 68
躯干 1.6* 36 165# 0.044 82
300 胸部 1.6# 24* 107# 0.067 0
肩部 2.1* 25* 137# 0.084 0
腹部 0.6* 28* 66# 0.021 0
背部 0.6 34* 97# 0.018 0
躯干 1.2# 29* 102# 0.041 0

图5

相对湿度对局部皮肤温度的影响"

图6

相对湿度对躯干温度的影响"

表2

相对湿度对降温服局部降温性能的影响"

相对
湿度/%
部位 降温梯度/
温度最低
点时间/
min
有效降温
时长/
min
皮肤温度
变化速度/
(℃·min-1)
20 胸部 2.3 18.0 86 0.128
肩部 3.0 22.0 119 0.136
腹部 0.9 19.0 48 0.047
背部 1.3 35.0 88 0.037
躯干 1.8 22.0 82 0.082
50 胸部 1.6 24.0 107 0.067
肩部 2.0* 25.0 137 0.08
腹部 0.6* 28.0 66* 0.021
背部 0.7* 34.0 97* 0.021
躯干 1.2* 29.0 102 0.041
80 胸部 0.4* 8.7# 160# 0.046
肩部 1.1* 13.0 164 0.085
腹部 0 0.0 0
背部 0.1# 9.3# 230# 0.011
躯干 0.4# 11.0* 86 0.036
[1] 董洋洋, 马建, 唐娜, 等. 高温热浪对中国人群死亡影响的Meta分析[J]. 热带医学杂志, 2021, 21(5):561-565.
DONG Yangyang, MA Jian, TANG Na, et al. Meta-analysis of the impact of heat wave on mortality in China[J]. Journal of Tropical Medicine, 2021, 21(5): 561-565.
[2] 王云仪, 赵蒙蒙. 高温强辐射下相变降温服的热调节作用客观测评[J]. 纺织学报, 2012, 33(5):101-105.
WANG Yunyi, ZHAO Mengmeng. Objective evaluation on thermal adjusting effect of PCM cooling vest under high temperature and strong radiation[J]. Journal of Textile Research, 2012, 33(5):101-105.
[3] 何骞. 基于相变材料的个体冷却服及其降温性能研究[D]. 西安: 西安科技大学, 2018:2-3.
HE Qian. Study on personal cooling garment based on phase change materials and its cooling performance[D]. Xi'an: Xi'an University of Science and Technology, 2018:2-3.
[4] 李利娜, 钱晓明, 范金土. 冷却服的冷却性能测试与分析[J]. 天津工业大学学报, 2008(5):47-50.
LI Lina, Qian Xiaoming, FAN Jintu. Test and analysis of cooling performance of cooling garments[J]. Journal of Tiangong University, 2008(5):47-50.
[5] NILESH K T. Personal protective equipment and personal cooling garments to reduce heat-related stress and injuries[J]. Medico-Legal Journal, 2020, 88(S1): DOI: 10.1177/002581722093588.
doi: 10.1177/002581722093588
[6] MOTAHAREH M Y, MOHAMMAD S. Personal cooling garments: a review[J]. Journal of The Textile Institute, 2014, 105(12): 1231-1250.
doi: 10.1080/00405000.2014.895088
[7] YANG H, CAO B, JU Y, et al. The effects of local cooling at different torso parts in improving body thermal comfort in hot indoor environments[J]. Energy and Buildings, 2019, 198: 528-541.
doi: 10.1016/j.enbuild.2019.06.004
[8] 郑晴, 王宏付, 柯莹, 等. 相变降温矿工服的设计与评价[J]. 纺织学报, 2020, 41(3): 124-129.
ZHENG Qing, WANG Hongfu, KE Ying, et al. Design and evaluation of cooling clothing by phase change materials for miners[J]. Journal of Textile Research, 2020, 41(3): 124-129.
[9] 王小波, 钱晓明, 王立晶, 等. 液体冷却服研究进展及消防应用可行性研究[J]. 纺织学报, 2021, 42(6):198-207.
WANG Xiaobo, QIAN Xiaoming, WANG Lijing, et al. Review on liquid cooling garment and its feasibility study in firefighting[J]. Journal of Textile Research, 2021, 42(6):198-207.
[10] ZHANG C K, CHEN Y, LIANG G J, et al. Heat strain in chemical protective clothing in hot-humid environment: effects of clothing thermal properties[J]. Journal of Central South University, 2021, 28(12): 3654-3665.
doi: 10.1007/s11771-021-4670-5
[11] ZHAO Y, YI W, CHAN A P C, et al. Evaluating the physiological and perceptual responses of wearing a newly designed cooling vest for construction workers[J]. Annals of Work Exposures and Health, 2017, 61(7): 883-901.
doi: 10.1093/annweh/wxx055 pmid: 28810683
[12] BACH A J E, MALEY M J, MINETT G M, et al. An evaluation of personal cooling systems for reducing thermal strain whilst working in chemical/biological protective clothing[J]. Frontiers in Physiology, 2019, 10: 424.
doi: 10.3389/fphys.2019.00424 pmid: 31031643
[13] WANG F, SONG W. An investigation of thermophysiological responses of human while using four personal cooling strategies during heatwaves[J]. Journal of Thermal Biology, 2017, 70:37-44.
doi: S0306-4565(16)30432-6 pmid: 29074024
[14] 戴宏钦, 卢业虎. 服装工效学[M]. 苏州: 苏州大学出版社, 2017:28-32.
DAI Hongqin, LU Yehu. Clothing ergonomics[M]. Suzhou: Soochow University Press, 2017:28-32.
[15] 郑晴. 基于相变材料的井下降温煤矿作业服设计与评价[D]. 无锡: 江南大学, 2020: 2-14.
ZHENG Qing. Design and evaluation of cooling workwear for underground mines based on phase change materials[D]. Wuxi: Jiangnan University, 2020: 2-14.
[16] 常素芹, 余兵, 王远途, 等. 抗菌防霉高分子蓄冷材料及其制备方法: 201510782840.2[P]. 2016-02-24.
CHANG Suqin, YU Bing, WANG Yuantu, et al. Antibacterial, mildew treated, polymer cold storage material and preparation method: 201510782840.2[P]. 2016-02-24.
[17] 柯莹, 周文. 个体降温服降温效应评价指标及方法[J]. 服装学报, 2021, 6(1): 1-7.
KE Ying, ZHOU Wen. Evaluation indicators and methods of cooling effects for personal cooling clothing[J]. Journal of Clothing Research, 2021, 6(1): 1-7.
[18] 朱颖心. 建筑环境学[M]. 4版. 北京: 中国建筑工业出版社, 2016: 94-96.
ZHU Yingxin. Built environment[M]. 4th ed. Beijing: China Architecture & Building Press, 2016: 94-96.
[19] 陈颖. 极端环境下人体劳动安全的研究[D]. 天津: 天津大学, 2009: 12-16.
CHEN Ying. Research on human labor security under extreme heat environment[D]. Tianjin: Tianjin University, 2009: 12-16.
[20] 李俊, 王云仪, 张渭源. 人体着装部位间皮肤冷感受之差异性研究:冷感受性敏感秩位的配对比较分析[J]. 东华大学学报(自然科学版), 2002(6):12-16.
LI Jun, WANG Yunyi, ZHANG Weiyuan. Study on skin sensitive difference of human body sections under clothing: comparative judging of body sections' cold sensitivity sequence[J]. Journal of Donghua Univer-sity (Natural Science Edition), 2002(6):12-16.
[21] 李俊, 王云仪, 张渭源. 人体着装部位间皮肤冷感受之差异性研究:局部皮肤温度变化的多重比较[J]. 东华大学学报(自然科学版), 2002(3):13-19.
LI Jun, WANG Yunyi, ZHANG Weiyuan. Study on skin sensitive difference of human body sections under clothing: multiple analysis of skin surface temperature changes[J]. Journal of Donghua University (Natural Science Edition), 2002(3):13-19.
[22] 张辉. 服装工效学[M]. 北京: 中国纺织出版社, 2009:12-14.
ZHANG Hui. Clothing ergonomics[M]. Beijing: China Textile & Apparel Press, 2009:12-14.
[1] 张昭华, 陈之瑞, 李璐瑶, 肖平, 彭浩然, 张钰涵. 人体局部皮肤的气流敏感性及其影响因素[J]. 纺织学报, 2021, 42(12): 125-130.
[2] 牛梦雨, 潘姝雯, 戴宏钦, 吕凯敏. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(07): 144-150.
[3] 黄倩倩, 李俊. 环境温度突变时人体热感觉变化机制研究进展[J]. 纺织学报, 2020, 41(04): 188-194.
[4] 郑晴, 王宏付, 柯莹, 李爽. 相变降温矿工服的设计与评价[J]. 纺织学报, 2020, 41(03): 124-129.
[5] 赵蒙蒙 宋晓霞. 通风服装对人体热舒适的影响[J]. 纺织学报, 2017, 38(10): 94-97.
[6] 王艳良 童志明 龚增. 滚筒摩擦实验条件对防静电服积累电荷量的影响[J]. 纺织学报, 2014, 35(2): 84-0.
[7] 王云仪, 赵蒙蒙. 高温强辐射下相变降温背心的热调节作用客观测评[J]. 纺织学报, 2012, 33(5): 101-105.
[8] 邹凤竹;朱良均;殷培伟. 黄河流域桑干茧回潮率参数研究[J]. 纺织学报, 2001, 22(05): 51-52.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .