纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 176-182.doi: 10.13475/j.fzxb.20211007907
金耀峰1,2,3, 刘雷艮1,2, 王薇1,2, 陆鑫1,2,3()
JIN Yaofeng1,2,3, LIU Leigen1,2, WANG Wei1,2, LU Xin1,2,3()
摘要:
为制备具有优异紫外线防护性能的纳米纤维,采用四氯化钛为钛源,纳米纤维素(NCC)为模板,在室温条件下诱导制备了屏蔽紫外线用金红石型纳米二氧化钛。并研究了反应温度、反应时间和四氯化钛的使用量对金红石型纳米TiO2质量分数的影响。通过设计正交试验优化出纳米二氧化钛最佳的制备条件:反应温度为25 ℃,反应时间为1 h,四氯化钛用量为3 mL,并对其微观结构及屏蔽紫外线性能进行表征。结果表明,纯金红石型纳米TiO2的分散性好,呈“刺球状”,粒径为100~250 nm。通过该纳米二氧化钛整理后的棉织物抗紫外线性能优异,紫外线防护系数大于40,证明此方法制备的金红石型纳米TiO2具有良好的紫外线屏蔽性能。
中图分类号:
[1] | 吴健春. 金红石纳米二氧化钛在涂料中的应用[J]. 钢铁钒钛, 2021, 42(1): 43-49. |
WU Jianchun. Application of rutile nano titanium dioxide in coatings[J]. Iron Steel Vanadium Titanium, 2021, 42(1): 43-49. | |
[2] | TAREK M A E, BASANT A M. ZnO and TiO2 nanoparticles as textile Protecting agents against UV radiation: a review[J]. Asian Journal of Chemical Sciences, 2018, 4(1): 1-14. |
[3] | ATHIR N, SHAH S A A, SHEHZAD F K, et al. Rutile TiO2 integrated zwitterion polyurethane composite films as an efficient photostable food packaging material[J]. Reactive & Functional Polymers, 2020, 157:104733. |
[4] |
LI Y Y, LIU J P, JIA Z J. Morphological control and photodegradation behavior of rutile TiO2 prepared by a low-temperature process[J]. Materials Letters, 2006, 60(13/14): 1753-1757.
doi: 10.1016/j.matlet.2005.12.012 |
[5] | 周忠诚, 阮建明, 邹俭鹏 等. 四氯化钛低温水解直接制备金红石型纳米二氧化钛[J]. 稀有金属, 2006(5): 653-656. |
ZHOU Zhongcheng, RUAN Jianming, ZOU Jianpeng, et al. Direct preparation of rutile nano titanium dioxide by low temperature hydrolysis of titanium tetrach-loride[J]. Chinese Journal of Raremetals, 2006(5): 653-656. | |
[6] |
GUO D L, ZHANG J M, SHA L ZG, et al. Preparation and characterization of lignin-TiO2 UV shielding composite material by induced synjournal with nanofibrillated cellulose[J]. Bioresources, 2020, 15(4): 7374-7389.
doi: 10.15376/biores |
[7] |
PENG, X Y, DING E Y. Low-temperature synjournal of flower-like TiO2 nanocrystals[J]. Micro & Nano Letters, 2011, 6(12): 998-1001.
doi: 10.1049/mnl.2011.0569 |
[8] |
ZHOU Y, DING E Y, LI W D. Synjournal of TiO2nanocubes induced by cellulose nanocrystal (CNC) at low temperature[J]. Materials Letters, 2007, 61(28): 5050-5052.
doi: 10.1016/j.matlet.2007.04.001 |
[9] |
BONDESON D, MATHEW A, OKSMAN K. Optimization of the isolation of nanocrystals from microcrystalline cellulose by acid hydrolysis[J]. Cellulose, 2006, 13(2): 171-180.
doi: 10.1007/s10570-006-9061-4 |
[10] |
KUMAR K N P. POROUS nanocomposites as catalyst supports: part I: second phase stabilization, thermal stability and anatase-to-rutile transformation in titania-alumina nanocomposites[J]. Applied Catalysis A: General, 1994, 119(1): 163-183.
doi: 10.1016/0926-860X(94)85032-1 |
[11] |
SPURR R A, MYERS H. Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer[J]. Analytical Chemistry. 1957, 29(5): 760-762.
doi: 10.1021/ac60125a006 |
[12] | ARULARASU M V, HARB M, SUNDARAM R. Synjournal and characterization of cellulose/TiO2 nanocomposite: evaluation of in vitro antibacterial and in silico molecular docking studies[J]. Carbohydrate Polymers, 2020, 249. |
[13] |
HABIBI S and JAMSHIDI M. Sol-gel synjournal of carbon-doped TiO2 nanoparticles based on microcrystalline cellulose for efficient photocatalytic degradation of methylene blue under visible light[J]. Environmental Technology, 2020, 41(24): 3233-3247.
doi: 10.1080/09593330.2019.1604815 |
[14] |
ZHAO J Z, WAN Z C, WANG L W, et al. Effect of nuclei on the formation of rutile titania[J]. Journal of Materials Science Letters, 1998, 17(22): 1867-1869.
doi: 10.1023/A:1006654916720 |
[15] | SANTOS J G, OGASAWARA T, CORREA R A. Synjournal of nanocrystalline rutile-phase titania at low temperatures[J]. Materials Science Poland, 2009, 27(4): 1067-1076. |
[16] |
NAVROTSKY A, KLEPPA, O J. Enthalpy of the Anatase-Rutile Transformation[J]. Journal of the American Ceramic Society, 1967, 50(11): 626.
doi: 10.1111/jace.1967.50.issue-11 |
[17] |
CHEN H M, MA J M, ZHAO Z G, et al. Hydrothermal preparation of uniform nanosize rutile and anatase particles[J]. Chemistry of Materials, 1995, 7(4): 663-671.
doi: 10.1021/cm00052a010 |
[1] | 吴嘉茵, 王汉琛, 黄彪, 卢麒麟. 氯离子响应性纳米纤维素荧光水凝胶的构筑[J]. 纺织学报, 2022, 43(02): 44-52. |
[2] | 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127. |
[3] | 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52. |
[4] | 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19. |
[5] | 王世贤, 降帅, 李萌萌, 刘丽芳, 张丽. 硅烷偶联剂改性纳米纤维素气凝胶的制备及其表征[J]. 纺织学报, 2020, 41(03): 33-38. |
[6] | 徐林, 任煜, 张红阳, 吴双全, 李雅, 丁志荣, 蒋文雯, 徐思峻, 臧传锋. 涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92. |
[7] | 李瑞雪 沈小林 张兴亚 肖杏芳 江珊 尹维维. 原位生成二氧化钛对棉纤维抗紫外线性能的影响[J]. 纺织学报, 2016, 37(3): 78-81. |
[8] | 杨平 霍瑞亭. 基于复凝聚法的纳米TiO2微胶囊制备[J]. 纺织学报, 2013, 34(4): 94-97. |
[9] | 梁慧 张光先 张凤秀 吴大洋. 紫外线−纳米二氧化钛改性高亲水涤纶织物的制备[J]. 纺织学报, 2013, 34(3): 82-86. |
[10] | 钱红飞. 茶多酚在蚕丝染色中的应用与抗紫外线性能[J]. 纺织学报, 2012, 33(2): 68-72. |
[11] | 杨璐 张辉. 水热法制备纳米TiO2 改性锦纶织物[J]. 纺织学报, 2011, 32(11): 83-89. |
[12] | 陈海珍. 纳米二氧化钛对聚酯纤维结晶性能的影响[J]. 纺织学报, 2010, 31(4): 25-29. |
[13] | 侯大寅;汤辉. 纳米AZO膜的制备及其光电性能[J]. 纺织学报, 2009, 30(10): 75-79. |
[14] | 徐阳;邵东锋;魏取福;朱贺;张靖. 沉积纳米TiO2织物的表征及其光学透射性能[J]. 纺织学报, 2009, 30(08): 59-63. |
[15] | 林鹤鸣;吕娜娜;戚栋明;吴明华. PBA/TiO2接枝复合整理剂及其整理棉织物的抗紫外线性能[J]. 纺织学报, 2009, 30(04): 85-89. |
|