纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 81-88.doi: 10.13475/j.fzxb.20211101008

• 纺织工程 • 上一篇    下一篇

条混工艺参数对混合效果的影响

曹巧丽1, 李豪1, 钱丽莉1, 郁崇文1,2()   

  1. 1.东华大学 纺织学院, 上海 201620
    2.东华大学 纺织面料技术教育部重点实验室, 上海 201620
  • 收稿日期:2021-11-01 修回日期:2021-12-03 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 郁崇文
  • 作者简介:曹巧丽(1993—),女,博士生。主要研究方向为纺纱基础理论。
  • 基金资助:
    国家自然科学基金项目(51773034);国家自然科学基金项目(52173032)

Effect of sliver blending parameters on blending irregularity of article blended yarn

CAO Qiaoli1, LI Hao1, QIAN Lili1, YU Chongwen1,2()   

  1. 1. College of Textiles, Donghua University, Shanghai 201620, China
    2. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
  • Received:2021-11-01 Revised:2021-12-03 Published:2022-02-15 Online:2022-03-15
  • Contact: YU Chongwen

摘要:

不同组分纤维在纱线内混合不匀会导致混纺纱的强度降低、强力不匀恶化、布面色差等瑕疵增加。为探究条混工艺参数对混纺纱条混合均匀度的影响,通过改进混合不匀指数(IBI)表征混合均匀度,并采用计算模拟纤维在条混时的运动情况,获取混合纱条中纤维的分布规律。讨论了不同并合根数、并合道数、排列方式、混纺比等条混工艺参数对纱条混合均匀度的影响,最后进行条混实验验证。结果表明:改进的混合不匀指数能更准确地表征混纺纱条的混合均匀度;并合道数以及并合根数越多,越能有效地降低混合不匀指数;不同组分的纱条间隔排列、混纺比越接近50∶50、纱条定量越小,则纤维越易在纱条中混合均匀;牵伸倍数与罗拉隔距对混合效果没有显著影响。条混实验验证与模拟结果具有很好的一致性。

关键词: 条混, 工艺参数, 混合均匀度, 混合不匀指数, 计算机模拟

Abstract:

Poor blending uniformity of different component fibers in yarn leads to the decrease in strength, the deterioration of the strength unevenness, and the increase of the chromatic aberration of the fabric. In order to explore the influence of sliver blending process parameters on the blending uniformity, the index of irregularity blending (IBI) was improved to characterize the blending uniformity, and the simulation of the movement of fibers during sliver blending process was analyzed to obtain the distribution regularity of fibers in the mixed sliver. In this study, the influence of different sliver mixing process parameters such as the number of combined slivers, the passages of slivers, arrangement mode, and blending ratio, on the uniformity of yarn sliver mixing was discussed, and the results were verified by experiments. The research results show that the improved IBI can evaluate more accurately the uniformity of blended slivers. The more the number of drawn passages and the number of combined slivers, the more uniform is the blending; the smaller the linear density of feeding sliver, the easier it is to carry out uniform blending. The IBI becomes less while the feeding sliver arranged at intervals and blending ratio of component close to 50∶50. The draft ratio and the distance of roller center do not show obvious effect on the IBI. The simulation results are in good agreement with the tested results.

Key words: sliver blending, process parameter, blending uniformity, index of blending irregularity, simulation

中图分类号: 

  • TS104.5

图1

纱条中纤维分布示意图"

表1

纤维与纱条性能参数"

纤维
颜色
纱条
定量/
(g·(10 m)-1)
平均截
面根数
纱条
半径/
mm
纤维平
均线密
度/tex
纤维平
均长度/
mm
白色(W) 7.30 1 094 6 0.667 75
黑色(B) 7.08 1 061 6 0.667 75

表2

条混实验方案"

样品
编号
每道并合根数n
(B涤纶条数+
W涤纶条数)
混纺比
B涤纶条含量(%)/
W涤纶条含量(%)
头道并条喂入的
颜色排列方式
牵伸倍数
(头道×2道×3道×
4道×(5道))
罗拉中心距/mm
(头道×2道×3道×
4道×(5道))
1# 1+1 49.2/50.8 WB 2×2×2×2(×2)
2# 2+2 WBWB 4×4×4×4(×4)
3# 3+3 WBWBWB 6×6×6×6(×6)
4# 4+4 WBWBWBWB 8×8×8×8(×8)
5# 4+4 49.2/50.8 WWBBWWBB 8×8×8×8 95×95×95×
6# 4+4 WWWWBBBB 95(×95)
7# 1+7 12.8/87.2 WWWBWWWW 8×8×8×8
8# 1+5 17.1/82.9 WWBWWW 6×6×6×6
9# 2+6 25.6/74.4 WWBWWBWW 8×8×8×8
10# 2+4 34.0/66.0 WBWWBW 6×6×6×6
11# 3+5 38.2/61.8 WBWWBWWB 8×8×8×8

图2

混合纱条截面图像"

表3

模拟计算方案"

样品
编号
头道纱
条截面
平均纤
维根数
牵伸倍数
(头道×
2道)
罗拉中
心距
(头道×
2道)/
mm
并合根数
(B+W)
头道喂入
颜色排列
方式(混
纺比)
12# 500 6×3
13# 1 000 6×6 95×95
14# 2 000 6×12
15# 1 000 6×3 95×95 3+3 WBWBWB
(50/50)
16# 6×12
17# 80×80
18# 1 000 6×6 95×95
19# 100×100

图3

并合根数与混合不匀率的关系"

图4

并合根数与IBI的关系"

图5

头道并条喂入排列方式与混合不匀率的关系"

图6

头道并条喂入排列方式与IBI指数的关系"

图7

混纺比与混合不匀率的关系"

图8

混纺比与IBI指数的关系"

图9

牵伸倍数、纱条定量与混合不匀率以及IBI指数的关系"

图10

罗拉中心距与混合不匀率以及IBI指数的关系"

[1] KRUCINNSKA I. Fibre blending irregularities in cross sections and on yarn surfaces in relation to yarn properties[J]. Textile Research Journal, 1988, 58(5): 291-298.
doi: 10.1177/004051758805800508
[2] 吴翼翔. 涤棉混纺高支纱混合方法的实践[J]. 纺织报告, 2005, 4(8): 28-32.
WU Yixiang. Practice of blending method of polyester-cotton blended high count yarn[J]. Textile Reports, 2005, 4(8): 28-32.
[3] 高晶, 孙卫国. 染色棉纤维与本色棉纤维混纺纱的试制[J]. 棉纺织技术, 2002, 30(12): 16-18.
GAO Jing, SUN Weiguo. Trial production of dyed cotton fiber and natural cotton fiber blended yarn[J]. Cotton Textile Technology, 2002, 30(12): 16-18.
[4] WADA O. Control of fiber form and yarn and fabric structure[J]. Journal of The Textile Institute, 1992, 83(3): 322-347.
doi: 10.1080/00405009208631207
[5] WATANABE A, KUROSAKI S N, KONDA F, et al. Analysis of blend irregularity in yarns using image processing: part II:applying the system to actual blended yarns[J]. Textile Research Journal, 1992, 62(12): 729-735.
doi: 10.1177/004051759206201205
[6] NAJAR S S, AMANI, HASANI H. Analysis of blend irregularities and fiber migration Index of wool/acrylic blended worsted yarns by using an image-analysis technique[J]. Journal of The Textile Institute, 2003, 94(3/4): 177-185.
doi: 10.1080/00405000308630606
[7] 于伟东. 纺织材料学[M]. 北京: 中国纺织出版社, 2006: 221-222.
YU Weidong. Textile material science[M]. Beijing: China Textile & Apparel Press, 2006:221-222.
[8] COPLAN M J. A study of blended woolen structures: part IV: some analytical methods for blend determi-nation[J]. Textile Research Journal, 1958, 28(11): 956-964.
doi: 10.1177/004051755802801108
[9] COPLAN M J, KLEIN W G. A study of blended woolen structures: Part I: statistics of the ideal random blended yarn[J]. Textile Research Journal, 1955, 25(9): 743-755.
doi: 10.1177/004051755502500901
[10] COPLAN M J, KLEIN W G. A study of blended woolen structures: part III: amplification and extended application of the theory of blend statistics[J]. Textile Research Journal, 1956, 26(12): 914-924.
doi: 10.1177/004051755602601202
[11] HAMPSON A G. Statistical tests of colour blending in yarn and rovings[J]. Journal of The Textile Institute, 1955, 46(6): 377-390.
[12] COPLAN M J, KLEIN W G. A study of blended woolen structures: part I : statistics of the ideal random blended yarn[J]. Textile Research Journal, 1955, 46(9): 743-755.
doi: 10.1177/004051757604601009
[13] 严灏景, 李再清. 混纺纱条混和不匀公式的探讨[J]. 纺织学报, 1980, 1(1): 1-6, 78.
YAN Haojing, LI Zaiqing. Discussion on formula of unevenness of blended yarn sliver[J]. Journal of Textile Research, 1980, 1(1): 1-6, 78.
[14] 林倩. 纤维几何特征对成纱条干不匀的影响分析[D]. 上海: 东华大学, 2011: 81-83.
LIN Qian. Effect of fiber geometrical characteristics on yarn unevenness[D]. Shanghai: Donghua University, 2011: 81-83.
[15] 于永玲, 徐铭九. 混并机混和效果评定方法的研究[J]. 纺织学报, 1987, 8(2): 73-77,66.
YU Yongling, XU Mingjiu. Study on evaluation method of mixing effect of mixer[J]. Journal of Textile Research, 1987, 8(2): 73-77, 66.
[16] 张连房, 李天恒, 杨庆斌. 混纺纱混纺不匀率测试法的理论商讨[J]. 纺织学报, 1990, 11(3): 18-20, 2.
ZHANG Lianfang, LI Tianheng, YANG Qingbin. Theoretical discussion on testing method of blend unevenness of blended yarn[J]. Journal of Textile Research, 1990, 11(3): 18-20, 2.
[17] 张树深. 纤维混纺比率不匀的数理统计学特性[J]. 纺织科学研究, 1987, 4(1): 35-38.
ZHANG Shushen. Mathematical statistics of fiber blending rate irregularity[J]. Textile Science Research, 1987, 4(1): 35-38.
[18] 罗建红, 刘光彬, 刘晓东. 不同混和方式对色纺纱混和均匀性的影响分析[J]. 棉纺织技术, 2015, 43(9): 42-45.
LUO Jianhong, LIU Guangbin, LIU Xiaodong. Influence analyses of different blending method on blending uniformity colored spun yarn[J]. Cotton Textile Technology, 2015, 43(9): 42-45.
[19] 邓茜茜, 杨瑞华, 徐亚亚, 等. 转杯纺混色棉纱的纤维混合均匀度[J]. 纺织学报, 2019, 40(7): 31-37.
DENG Qianqian, YANG Ruihua, XU Yaya, et al. Study on mixing uniformity of fibers in rotor-spun mixed yarns[J]. Journal of Textile Research, 2019, 40(7): 31-37.
[20] 杨瑞华, 王卓, 邓茜茜, 等. 多通道转杯纺羊毛混色织物的Friele模型[J]. 服装学报, 2020, 5(1): 1-5.
YANG Ruihua, WANG Zhuo, DENG Qianqian, et al. Friele model of color mixing wool fabric produced by multi-channel rotor spun yarn[J]. Journal of Clothing Research, 2020, 5(1): 1-5.
[21] JIANG Z, KUANG X Q, YANG J P, et al. Simulation on Fiber Random Arrangement in the Yarn Part II: Joint Effect of Fiber Length and Fineness Distribution[J]. Journal of The Textile Institute, 2017, 108(3): 347-352.
doi: 10.1080/00405000.2016.1166821
[22] SUN N, YU C W. Simulation on roller drafting based on hook fiber arrangement in the sliver[J]. Fibers and Polymers, 2021. DOI: 10.1007/s12221-021-0496-x.
doi: 10.1007/s12221-021-0496-x
[23] SUN N, YU C W, YANG J P. Modeling fiber arrangement and distribution during the roller drafting process[J]. Textile Research Journal, 2019, 89(19/20): 4295-4305.
doi: 10.1177/0040517519829926
[24] 贺雅勤, 毕雪蓉, 钱希茜, 等. 牵伸对纱条条干不匀影响的模拟研究[J]. 纺织学报, 2021, 42(6): 85-90.
HE Yaqin, BI Xuerong, QIAN Xixi, et al. Simulation study on effect of drafting on sliver unevenness[J]. Journal of Textile Research, 2021, 42(6): 85-90.
[25] CAO Qiaoli, QIAN Lili, LI Hao, et al. Simulation of sliver blending and evaluation of blending irregularity[J]. Textile Research Journal, 2021. DOI: 10.1177/00405175211028.
doi: 10.1177/00405175211028
[1] 黄继伟, 宁晚娥, 张锋, 左保齐. 基于组合学的茧丝落绪分拆模拟与分析[J]. 纺织学报, 2019, 40(01): 32-39.
[2] 徐威 夏磊 周兴海 西鹏 程博闻. 纺丝工艺及预氧化条件对离心纺聚丙烯腈基纳米碳纤维的影响[J]. 纺织学报, 2016, 37(2): 7-12.
[3] 张吉生 蒋高明. 组织工艺参数对经编送经量的影响[J]. 纺织学报, 2016, 37(09): 42-47.
[4] 王花娥. 集圈工艺参数对单面集圈织物性能的影响[J]. 纺织学报, 2016, 37(08): 54-58.
[5] 杨建国 熊经纬 徐兰 项前. 应用混合种群遗传神经网络的精梳毛纺工艺参数反演模型[J]. 纺织学报, 2016, 37(07): 149-154.
[6] 史晶晶 陈伟雄 易洪雷 薛元 杨恩龙. 双色段彩纱针织物图案的形成机制[J]. 纺织学报, 2015, 36(09): 34-37.
[7] 顾朝晖 l雒少娜. 针织服装面料缝制工艺参数的确定[J]. 纺织学报, 2015, 36(09): 94-99.
[8] 冒海文 缪旭红 陈晴. 涤纶长丝仿棉经编织物的碱减量处理[J]. 纺织学报, 2015, 36(08): 89-93.
[9] 周金香 邹专勇 黄建光 许梦露 陈佳慧 金亚琪 张莲莲. 喷气涡流纺成纱工艺对色纺竹浆纤维针织物性能的影响[J]. 纺织学报, 2015, 36(06): 30-36.
[10] 邹专勇. 喷气涡流纺成纱工艺对竹浆纤维色纺纱性能的影响[J]. 纺织学报, 2014, 35(2): 23-0.
[11] 贾国欣 任家智 冯清国. 高速精梳机锡林变速机构参数对工艺性能的影响[J]. 纺织学报, 2014, 35(12): 110-0.
[12] 苏丹 蒋高明 缪旭红. 三维整体经编夹芯结构预制件的制备工艺[J]. 纺织学报, 2013, 34(3): 59-65.
[13] 王建铨 吴津田 刘鹏清 叶光斗 徐建军. 聚乙烯醇水溶纤维干法纺丝成形模拟[J]. 纺织学报, 2013, 34(2): 23-27.
[14] 杨瑞华;高卫东;王善元. 转杯纺复合纱长丝与短纤复合点位置的建模与分析[J]. 纺织学报, 2011, 32(4): 39-42.
[15] 吴雄华;刘亚;. 基于BP神经网络的熔喷非织造布工艺参数优化[J]. 纺织学报, 2011, 32(1): 51-54.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175 -180 .
[2] 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20 -25 .
[3] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26 -32 .
[4] 李辉芹, 张楠, 温晓丹, 巩继贤, 赵晓明, 王支帅. 纤维材料降噪结构体的研究进展[J]. 纺织学报, 2020, 41(03): 175 -181 .
[5] 张星, 刘金鑫, 张海峰, 王玉晓, 靳向煜. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(03): 168 -174 .
[6] 王建坤, 蒋晓东, 郭晶, 杨连贺. 功能化氧化石墨烯吸附材料的研究进展[J]. 纺织学报, 2020, 41(04): 167 -173 .
[7] 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20 -28 .
[8] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95 -100 .
[9] 高猛, 王增元, 漏琦伟, 陈钢进. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(09): 52 -58 .
[10] 胡侨乐, 边国丰, 邱夷平, 魏毅, 徐珍珍. 高速列车地板用蜂窝夹芯结构复合材料隔声性能[J]. 纺织学报, 2021, 42(10): 75 -83 .