纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 44-52.doi: 10.13475/j.fzxb.20211101309

• 纤维材料 • 上一篇    下一篇

氯离子响应性纳米纤维素荧光水凝胶的构筑

吴嘉茵1,2, 王汉琛1,2, 黄彪1, 卢麒麟1,2()   

  1. 1.闽江学院 福建省新型功能性纺织纤维及材料重点实验室, 福建 福州 350108
    2.福建农林大学 材料工程学院, 福建 福州 350002
  • 收稿日期:2021-11-02 修回日期:2021-12-08 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 卢麒麟
  • 作者简介:吴嘉茵(1997—),女,硕士生。主要研究方向为生物质纤维纳米材料。
  • 基金资助:
    福建省科技创新重点项目(2021G02011);福建省自然科学基金面上项目(2021J011034);福州市科技计划项目(2021-S-089);闽江学院引进人才项目(MJY18010)

Fabrication of fluorescent cellulose nanocrystals hydrogels for chloride ion response

WU Jiayin1,2, WANG Hanchen1,2, HUANG Biao1, LU Qilin1,2()   

  1. 1. Fujian Key Laboratory of Novel Functional Textile Fibers and Materials, Minjiang University, Fuzhou, Fujian 350108, China
    2. College of Material Engineering, Fujian Agriculture and Forestry University, Fuzhou, Fujian 350002, China
  • Received:2021-11-02 Revised:2021-12-08 Published:2022-02-15 Online:2022-03-15
  • Contact: LU Qilin

摘要:

为解决传统PVA复合水凝胶制备过程中使用有毒试剂或需要反复多次冻融能耗高、过程繁琐的问题,以植酸(PA)作为交联剂将荧光纳米纤维素(F-CNCs)与聚乙烯醇(PVA)有机结合,基于多重氢键作用,构建了力学性能好、Cl-响应灵敏的PVA/F-CNCs/PA纳米纤维素荧光水凝胶。基于F-CNCs优异的力学性能、荧光性能、良好的生物相容性及纳米效应,分析了PVA水凝胶良好的荧光性能及Cl-响应性。结果表明:当F-CNCs的含量为0.6 g 时,PVA/F-CNCs/PA复合水凝胶的压缩强度提高了150%,且结晶度以及热稳定性均有所提高。PVA/F-CNCs/PA复合水凝胶在低的pH值下对Cl-敏感,荧光淬灭效率在Cl-浓度为0~0.2 mol/L范围内呈线性响应,表明制备得到的纳米纤维素荧光水凝胶在Cl-浓度分析检测、疾病诊断、生物和化学传感器等方面具有潜在应用价值。

关键词: 氯离子响应, 荧光纳米纤维素, 植酸, 多重氢键, 荧光水凝胶

Abstract:

In order to avoid the usage of toxic reagents and reduce the high energy consumption and complicated multiple freeze-thaw cycles in the traditional preparation process of PVA composite hydrogels, PVA/F-CNCs/PA fluorescent cellulose nanocrystals hydrogels with good mechanical properties and high sensibility to Cl- were prepared by combining fluorescent cellulose nanocrystals (F-CNCs) and poly(vinyl alcohol) (PVA) through multiple hydrogen bonding under the cross-linking of phytic acid (PA). The fluorescent performance and Cl- sensibility of PVA hydrogel were improved significantly due to the excellent mechanical properties, high fluorescent performance, good biocompatibility and nanometer effect of F-CNCs. When the content of F-CNCs was 0.6 g, the compressive strength of PVA/F-CNCs/PA composite hydrogels was increased by 150%, and the crystallinity and thermal stability were also improved. The composite hydrogels were sensitive to Cl- at low pH, and the fluorescence quenching efficiency showed a linear response in the Cl- concentration range of 0-0.2 mol/L. The results indicated that the prepared fluorescent hydrogels had potential application in the field of Cl- concentration analysis and detection, biological and chemical sensors and disease diagnosis.

Key words: chloride ion response, fluorescent cellulose nanocrystal, phytic acid, multiple hydrogen bond, fluorescent hydrogel

中图分类号: 

  • TQ352

图1

复合水凝胶的SEM照片(×30 000)"

图2

不同F-CNCs含量的复合水凝胶及F-CNCs的红外光谱图"

图3

不同F-CNCs含量复合水凝胶及F-CNCs的XRD谱图"

图4

不同F-CNCs含量的复合水凝胶的溶胀性能"

图5

不同F-CNCs含量的压缩强度-应变曲线"

图6

不同F-CNCs含量的PVA/F-CNCs/PA复合水凝胶的流变性能"

图7

复合水凝胶PVA/PA和PVA/F-CNCs/PA的TG和DTG曲线"

图8

PVA/F-CNCs/PA复合水凝胶的荧光性能"

[1] GAHARWAR A K, PEPPAS N A, KHADEMHOSSEINI A. Nanocomposite hydrogels for biomedical applica-tions[J]. Biotechnology & Bioengineering, 2014, 111(3): 441-453.
[2] HOFFMAN A S. Hydrogels for biomedical applica-tions[J]. Advanced Drug Delivery Reviews, 2012, 64:18-23.
doi: 10.1016/j.addr.2012.09.010
[3] YAN J J, WANG H, ZHOU Q H, et al. Reversible and multisensitive quantum dot gels[J]. Macromolecules, 2011, 44(11): 4306-4312.
doi: 10.1021/ma200591w
[4] NISHIYABU R, USHIKUBO S, KAMIYA Y, et al. A boronate hydrogel film containing organized two-component dyes as a multicolor fluorescent sensor for heavy metal ions in water[J]. Journal of Materials Chemistry A, 2014, 2:15846-15852.
[5] HASSAN C M, PEPPAS N A. Structure and applications of poly(vinyl alcohol) hydrogels produced by conventional crosslinking or by freezing/thawing methods[J]. Advances in Polymer Science, 2000, 153:37-65.
[6] OSSIPOV D, PISKOUNOVA S, HILBORN J. Poly(vinyl alcohol) cross-linkers for in vivo injectable hydrogels[J]. Macromolecules, 2008, 41(11): 3971-3982.
doi: 10.1021/ma800332c
[7] QU J, HUAN G, CHEN Y, et al. Coating gigaporous polystyrene microspheres with cross-linked poly(vinyl alcohol) hydrogel as a rapid protein chromatography matrix[J]. ACS Applied Materials & Interfaces, 2014, 6(15): 12752-12760.
[8] STAUFFER S R, PEPPAST N A. Poly(vinyl alcohol) hydrogels prepared by freezing-thawing cyclic processing[J]. Polymer, 1992, 33(18): 3932-3936.
doi: 10.1016/0032-3861(92)90385-A
[9] HASSAN C M, PEPPAS N A. Cellular PVA hydrogels produced by freeze/thawing[J]. Journal of Applied Polymer Science, 2000, 76(14): 2075-2079.
doi: 10.1002/(ISSN)1097-4628
[10] YOKOYAMA F, ACHIFE E C, MOMODA J, et al. Morphology of optically anisotropic agarose hydrogel prepared by directional freezing[J]. Colloid and Polymer Science, 1990, 268(6): 552-558.
doi: 10.1007/BF01410297
[11] GUTIERREZ M C, JOBBAGY M, RAPUN N, et al. A biocompatible bottom-up route for the preparation of hierarchical biohybrid materials[J]. Advanced Materials, 2006, 18(9): 1137-1140.
doi: 10.1002/(ISSN)1521-4095
[12] 张松华, 熊明诚, 王梓, 等. 基于机械力化学作用制备荧光纳米纤维素[J]. 化工进展, 2020, 39(4): 1405-1413.
ZHANG Songhua, XIONG Mingcheng, WANG Zi, et al. Preparation of fluorescent cellulose nanocrystals based on mechanical force chemical effect[J]. Chemical Industry and Engineering Progress, 2020, 39(4): 1405-1413.
[13] DEMIREL G B, CAYKARA T, DEMIRAY M, et al. Effect of pore-forming agent type on swelling properties of macroporous poly(N-[3-(dimethylaminopropyl)]-methacrylamide-co-acrylamide) hydrogels[J]. Journal of Macromolecular Science Part A, 2008, 46(1): 58-64.
doi: 10.1080/10601320802515316
[14] TANG H, BUTCHOSA N, ZHOU Q. A transparent, hazy, and strong macroscopic ribbon of oriented cellulose nanofibrils bearing poly(ethylene glycol)[J]. Advanced Materials, 2015, 27(12): 2070-2076.
doi: 10.1002/adma.v27.12
[15] FORTUNATI E, PUGLIA D, LUZI F, et al. Binary PVA bio-nanocomposites containing cellulose nanocrystals extracted from different natural sources: part I[J]. Carbohydrate Polymers, 2013, 97(2): 825-836.
doi: 10.1016/j.carbpol.2013.03.075
[16] MANSUR H S, SADAHIRA C M, SOUZA A N, et al. FTIR spectroscopy characterization of poly (vinyl alcohol) hydrogel with different hydrolysis degree and chemically crosslinked with glutaraldehyde[J]. Materials Science & Engineering C, 2008, 28(4): 539-548.
[17] ABITBOL T, JOHNSTONE T, QUINN T M, et al. Reinforcement with cellulose nanocrystals of poly(vinyl alcohol) hydrogels prepared by cyclic freezing and thawing[J]. Soft Matter, 2011, 7(6): 2373-2379.
doi: 10.1039/c0sm01172j
[18] ZHANG S, ZHANG Y, LI B, et al. One-step preparation of a highly stretchable, conductive, and transparent poly(vinyl alcohol)-phytic acid hydrogel for casual writing circuits[J]. ACS Applied Materials & Interfaces, 2019, 11(35): 32441-32448.
[19] LIU D, SUN X, TIAN H, et al. Effects of cellulose nanofibrils on the structure and properties on PVA nanocomposites[J]. Cellulose, 2013, 20(6): 2981-2989.
doi: 10.1007/s10570-013-0073-6
[20] CHEN K, ZHANG S, LI A, et al. Bioinspired interfacial chelating-like reinforcement strategy toward mechanically enhanced lamellar materials[J]. Acs Nano, 2018, 12(5): 4269-4279.
doi: 10.1021/acsnano.7b08671
[21] RAMBABU N, PANTHAPULAKKAL S, SAIN M, et al. Production of nanocellulose fibers from pinecone biomass: evaluation and optimization of chemical and mechanical treatment conditions on mechanical properties of nanocellulose films[J]. Industrial Crops and Products, 2016, 83:746-754.
doi: 10.1016/j.indcrop.2015.11.083
[22] DUFRESNE A. Nanocellulose: potential reinforcement in composites[M]. London: Royal Society of Chemistry, 2012: 1-32.
[23] ABIDI N, CABRALES L, HAIGLER C H. Changes in the cell wall and cellulose content of developing cotton fibers investigated by FT-IR spectroscopy[J]. Carbohydrate Polymers, 2014, 100:9-16.
doi: 10.1016/j.carbpol.2013.01.074
[24] DEEPA B, ABRAHAM E, CORDEIRO N, et al. Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study[J]. Cellulose, 2015, 22(2): 1075-1090.
doi: 10.1007/s10570-015-0554-x
[25] CUNHA M A A D, CONVERTI A, SANTOS J C, et al. PVA-hydrogel entrapped Candida guilliermondii for xylitol production from sugarcane hemicellulose hydrolysate[J]. Applied Biochemistry & Biotechnology, 2009, 157(3): 527-537.
[26] 孟立山, 詹秀环, 姚新建. 聚乙烯醇水凝胶的制备及其溶胀性能[J]. 化工技术与开发, 2010, 39(8): 13-14.
MENG Lishan, ZHAN Xiuhuan, YAO Xinjian. Study on surface texturization and properties of monocrystalline silicon-based solar cells[J]. Technology & Development of Chemical Industry, 2010, 39(8): 13-14.
[27] 顾雪梅, 安燕, 殷雅婷, 等. 水凝胶的制备及应用研究[J]. 广州化工, 2012, 40(10): 11-13.
GU Xuemei, AN Yan, YIN Yating, et al. Preparation and application of hydrogel[J]. Guangzhou Chemical Industry, 2012, 40(10): 11-13.
[28] SANNINO A, NETTI P A, MENSITIERI G, et al. Designing microporous macromolecular hydrogels for biomedical applications: a comparison between two techniques[J]. Composites Science & Technology, 2003, 63(16): 2411-2416.
[29] SPILLER K L, LAURENCIN S J, CHARLTON D, et al. Superporous hydrogels for cartilage repair: evaluation of the morphological and mechanical properties[J]. Acta Biomaterialia, 2008, 4(1): 17-25.
doi: 10.1016/j.actbio.2007.09.001
[30] SHI X, HU Y, TU K, et al. Electromechanical polyaniline-cellulose hydrogels with high compressive strength[J]. Soft Matter, 2013, 9(42): 10129-10134.
doi: 10.1039/c3sm51490k
[31] TAKESHITA H, KANAYA T, NISHIDA K, et al. Gelation process and phase separation of PVA solutions as studied by a light scattering technique[J]. Macromolecules, 1999, 32(23): 7815-7819.
doi: 10.1021/ma990565j
[32] TAKAHASHI N, KANAYA T, NISHIDA K, et al. Effects of cononsolvency on gelation of poly(vinyl alcohol) in mixed solvents of dimethyl sulfoxide and water[J]. Polymer, 2003, 44(15): 4075-4078.
doi: 10.1016/S0032-3861(03)00390-2
[33] RICCIARDI R, AURIEMMA F, DE ROSA C, et al. X-ray diffraction analysis of poly(vinyl alcohol) hydrogels, obtained by freezing and thawing techniques[J]. Macromolecules, 2004, 37(5): 1921-1927.
doi: 10.1021/ma035663q
[34] LAM E, MALE K B, CHONG J H, et al. Applications of functionalized and nanoparticle-modified nanocrystalline cellulose[J]. Trends in Biotechnology, 2012, 30(5): 283-90.
doi: 10.1016/j.tibtech.2012.02.001
[35] KIM S, SEO J, PARK S Y. Torsion-induced fluorescence quenching in excited-state intramolecular proton transfer (ESIPT) dyes[J]. Journal of Photochemistry & Photobiology A Chemistry, 2007, 191(1): 19-24.
[36] SHIZUKA H. Excited-state proton-transfer reactions and proton-induced quenching of aromatic compounds[J]. Accchemres, 1985, 18(5): 141-147.
[1] 刘新华, 刘海龙, 方寅春, 严鹏, 侯广开. 聚乙烯亚胺/植酸层层自组装阻燃涤/棉混纺织物制备及其性能[J]. 纺织学报, 2021, 42(11): 103-109.
[2] 林生根, 刘晓辉, 苏晓伟, 何聚, 任元林. 新型植酸基阻燃剂改性Lyocell纤维与织物的制备及其性能[J]. 纺织学报, 2021, 42(07): 25-30.
[3] 应丽丽, 李长龙, 王宗乾, 王邓峰, 吴开明, 谢伟, 程欢. 植酸作用下锆离子修饰羽绒及其保温性能[J]. 纺织学报, 2020, 41(10): 94-100.
[4] 周青青, 陈嘉毅, 祁珍明, 陈为健, 邵建中. 阻燃抗菌棉织物的制备及其性能表征[J]. 纺织学报, 2020, 41(05): 112-120.
[5] 徐爱玲, 王春梅. 植酸的铵化及其对Lyocell织物的阻燃整理[J]. 纺织学报, 2020, 41(02): 83-88.
[6] 曹机良 孟春丽. 腐植酸钠对棉织物的吸附性能[J]. 纺织学报, 2013, 34(7): 74-78.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林彬;李哲. 泡泡袖袖山褶皱凸起量的影响因素[J]. 纺织学报, 2009, 30(06): 104 -106 .
[2] 贾庆龙, 焦晓宁, 王忠忠. PVDF静电纺锂电隔膜纤维直径预测模型及优化[J]. 纺织学报, 2012, 33(3): 22 -26 .
[3] 陈仁忠 胡毅 袁菁红 沈桢 陈艳丽 吕慧 何霞. 静电纺MnO2/PAN纳米纤维膜的制备及其催化氧化甲醛性能[J]. 纺织学报, 2015, 36(05): 1 -6 .
[4] 陈悦, 赵永欢, 褚朱丹, 庄志山, 邱琳琳, 杜平凡. 基于碳纤维及其织物的柔性锂电池电极研究进展[J]. 纺织学报, 2019, 40(02): 173 -180 .
[5] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175 -180 .
[6] 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20 -25 .
[7] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26 -32 .
[8] 李辉芹, 张楠, 温晓丹, 巩继贤, 赵晓明, 王支帅. 纤维材料降噪结构体的研究进展[J]. 纺织学报, 2020, 41(03): 175 -181 .
[9] 张星, 刘金鑫, 张海峰, 王玉晓, 靳向煜. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(03): 168 -174 .
[10] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100 -105 .