纺织学报 ›› 2022, Vol. 43 ›› Issue (03): 24-30.doi: 10.13475/j.fzxb.20211102108

• 特约专栏:生物医用纺织品 • 上一篇    下一篇

外泌体功能化串晶结构纤维膜的制备及其成骨分化性能

张宇1,2, 刘来俊1,2, 李超婧1,2, 晋巧巧3,4, 谢千阳3,5, 李佩伦3,6, 王富军1,2(), 王璐1,2   

  1. 1.东华大学 纺织面料技术教育部重点实验室, 上海 201620
    2.东华大学 纺织学院, 上海 201620
    3.上海交通大学 口腔医学院, 上海 200011
    4.上海交通大学医学院附属第九人民医院 牙体牙髓科, 上海 200011
    5.上海交通大学医学院附属第九人民医院 口腔外科, 上海 200011
    6.上海交通大学医学院附属第九人民医院 口腔正畸科, 上海 200011
  • 收稿日期:2021-11-03 修回日期:2022-01-03 出版日期:2022-03-15 发布日期:2022-03-29
  • 通讯作者: 王富军
  • 作者简介:张宇(1997—),女,硕士生。主要研究方向为静电纺丝骨修复材料。
  • 基金资助:
    高等学校学科创新引智计划2.0项目(BP0719035);东华大学研究生创新基金资助项目(GSIF-DH-M-2021001)

Preparation of exosome-functionalized shish-kebab fibrous membrane and its osteogenic differentiation ability

ZHANG Yu1,2, LIU Laijun1,2, LI Chaojing1,2, JIN Qiaoqiao3,4, XIE Qianyang3,5, LI Peilun3,6, WANG Fujun1,2(), WANG Lu1,2   

  1. 1. Key Laboratory of Textile Science & Technology, Ministry of Education, Donghua University, Shanghai 201620, China
    2. College of Textiles, Donghua University, Shanghai 201620, China
    3. College of Stomatology, Shanghai Jiaotong University, Shanghai 200011, China
    4. Department of Endodontics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
    5. Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
    6. Department of Orthodontics, Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
  • Received:2021-11-03 Revised:2022-01-03 Published:2022-03-15 Online:2022-03-29
  • Contact: WANG Fujun

摘要:

为提高合成可吸收引导骨再生膜的骨诱导活性,通过静电纺丝和溶剂诱导结晶法制备了聚己内酯(PCL)/β-磷酸三钙(β-TCP)串晶纳米纤维膜,并通过聚多巴胺的黏附作用将外泌体负载于纤维膜上进行改性,对复合纤维膜的微观形貌、化学组成、理化性能和细胞成骨分化性能进行测试与分析。结果表明:PCL/β-TCP纳米纤维上成功诱导出串晶结构,且经串晶和聚多巴胺双重修饰的纤维膜具有最佳的表面浸润性和优异的蛋白吸附能力,最终获得的外泌体功能化的串晶纳米纤维膜在串晶结构、聚多巴胺和外泌体共同作用下可促进骨髓间充质干细胞碱性磷酸酶活性的增加,有望应用于体内加速骨愈合。

关键词: 纳米纤维膜, 引导骨再生, 静电纺丝, 串晶纤维膜, 外泌体, 多巴胺, 聚己内酯, 骨组织修复材料

Abstract:

In order to improve the osteoconduction of synthetic resorbable membranes for guided bone regeneration, polycaprolactone (PCL)/β-tricalcium phosphate (β-TCP) shish-kebab nanofibrous membranes were prepared by electrospinning and solvent-induced crystallization. Exosomes were then immobilized on membranes via adhesion of polydopamine. The morphology, chemical composition, physicochemical and cellular osteogenic differentiation properties of the composite fibrous membranes were characterized. The shish-kebab structure was successfully induced on PCL/β-TCP nanofibers. The results show that membranes doubly modified by shish-kebab and polydopamine had the best surface wettability and excellent protein adsorption ability. Exosome-functionalized shish-kebab fibrous membrane increases the alkaline phosphatase activity of bone marrow mesenchymal stem cells due to the synergistic effect of shish-kebab structure, polydopamine, and exosome, which has good therapeutic potential for promoting bone healing in vivo.

Key words: nanofibrous membrane, guided bone regeneration, electrospinning, shish-kebab fibrous membrane, exosome, dopamine, polycaprolactone, bone reconstruction material

中图分类号: 

  • TS101.4

图1

PDA改性前后PT5和PT5SK纤维膜的SEM照片"

图2

β-TCP、PCL、PT5、PT5/PDA、PT5SK和PT5SK/PDA的红外光谱图"

图3

PDA改性前后PT5和PT5SK纤维膜的水接触角"

图4

PT5、PT5SK 、PT5/PDA、PT5SK/PDA纤维膜的蛋白吸附情况"

图5

BMSC-Exo的FE-TEM照片和粒径分布图"

图6

rBMSCs在纤维膜上成骨诱导7和14 d的ALP染色图"

图7

rBMSCs在纤维膜上成骨诱导7和14 d的ALP活力"

[1] GERMEN Meliha, BASER Ulku, LACIN Cagdas Caglar, et al. Periodontitis prevalence, severity, and risk factors: a comparison of the AAP/CDC case definition and the EFP/AAP classification[J]. International Journal of Environmental Research and Public Health, 2021,18(7):3459.
doi: 10.3390/ijerph18073459
[2] 李成, 施乐. 2种修复膜材料用于牙种植引导骨再生的临床效果比较[J]. 中国口腔颌面外科杂志, 2020,18(5):438-41.
LI Cheng, SHI Le. Clinical analysis of different oral biofilm materials for guided bone regeneration in dental[J]. China Journal of Oral and Maxillofacial Surgery, 2020,18(5):438-41.
[3] YANG Chuqun, SHAO Qi, HAN Yulai, et al. Fibers by electrospinning and their emerging applications in bone tissue engineering[J]. Applied Sciences, 2021,11(19):9082.
doi: 10.3390/app11199082
[4] VAQUETTE Cedryck, SAIFZADEH Siamak, FARAG Amro, et al. Periodontal tissue engineering with a multiphasic construct and cell sheets[J]. Journal of Dental Research, 2019,98(6):673-681.
doi: 10.1177/0022034519837967
[5] CHEN Honglin, HUANG Xiaobin, ZHANG Minmin, et al. Tailoring surface nanoroughness of electrospun scaffolds for skeletal tissue engineering[J]. Acta Biomaterialia, 2017,59:82-93.
doi: S1742-7061(17)30432-4 pmid: 28690010
[6] HUANG Chunpeng, YANG Gang, ZHOU Shaobing, et al. Controlled delivery of growth factor by hierarchical nanostructured core-shell nanofibers for the efficient repair of critical-sized rat calvarial defect[J]. ACS Biomaterials Science & Engineering, 2020,6(10):5758-5770.
[7] LIU Laijun, SHANG Yuna, LI Chaojing, et al. Hierarchical nanostructured electrospun membrane with periosteum-mimic microenvironment for enhanced bone regeneration[J]. Advanced Healthcare Materials, 2021,10(21):e2101195.
doi: 10.1002/adhm.202101195 pmid: 34350724
[8] DANESHMANDI Leila, SHAH Shiv, JAFARI Tahereh, et al. Emergence of the stem cell secretome in regenerative engineering[J]. Trends Biotechnol, 2020,38(12):1373-1384.
doi: 10.1016/j.tibtech.2020.04.013
[9] LIU Li, GUO Shujuan, SHI Weiwei, et al. Bone marrow mesenchymal stem cell-derived small extracellular vesicles promote periodontal regeneration[J]. Tissue Engineering Part A, 2021,27(13/14):962-976.
doi: 10.1089/ten.tea.2020.0141
[10] KALLURI Raghu, LEBLEU Valerie S. The biology, function, and biomedical applications of exosomes [J]. Science, 2020,367(6478):eaau6977.
doi: 10.1126/science.aau6977
[11] WEI Yan, SHI Miusi, ZHANG Jinglun, et al. Autologous versatile vesicles-incorporated biomimetic extracellular matrix induces biomineralization[J]. Advanced Functional Materials, 2020,30(21):2000015.
doi: 10.1002/adfm.v30.21
[12] WANG Jie, DONG Yue, LI Yiwei, et al. Designer exosomes for active targeted chemo-photothermal synergistic tumor therapy[J]. Advanced Functional Materials, 2018,28(18):1707360.
doi: 10.1002/adfm.v28.18
[13] HUANG Jianghong, XIONG Jianyi, YANG Lei, et al. Cell-free exosome-laden scaffolds for tissue repair[J]. Nanoscale, 2021,13(19):8740-8750.
doi: 10.1039/d1nr01314a pmid: 33969373
[14] 魏继珍. 人脱落乳牙牙髓干细胞来源外泌体调节骨髓间充质干细胞生物学特性及其在骨缺损修复中的研究[D]. 太原:山西医科大学, 2020: 34-42.
WEI Jizhen. Exosomes derived from human exfoliated deciduous teeth stem cells regulate biological characteristics of bone marrow mesenchymal stem cells and its applications in bone regeneration[D]. Taiyuan: Shanxi Medical University, 2020: 34-42.
[15] WANG Xiaoqin, SHAH Furqan A, VAZIRISANI Forugh, et al. Exosomes influence the behavior of human mesenchymal stem cells on titanium surfaces[J]. Biomaterials, 2020,230:119571.
doi: S0142-9612(19)30670-2 pmid: 31753474
[16] ZHA Yao, LI Yawu, LIN Tianyi, et al. Progenitor cell-derived exosomes endowed with VEGF plasmids enhance osteogenic induction and vascular remodeling in large segmental bone defects[J]. Theranostics, 2021,11(1):397-409.
doi: 10.7150/thno.50741 pmid: 33391482
[17] AMOKRANE Gana, HUMBLOT Vincent, JUBELI Emile, et al. Electrospun poly(epsilon-caprolactone) fiber scaffolds functionalized by the covalent grafting of a bioactive polymer: surface characterization and influence on in vitro biological response[J]. Acs Omega, 2019,4(17):17194-17208.
doi: 10.1021/acsomega.9b01647
[18] SIQUEIRA Lilian de, PASSADOR Fábio Roberto, LOBO Anderson Oliveira, et al. Morphological, thermal and bioactivity evaluation of electrospun PCL/beta-TCP fibers for tissue regeneration[J]. Polimeros-Ciencia E Tecnologia, 2019,29(1):e2019005.
[19] HENRIQUE Backes Eduardo, GONÇALVES Beatrice Cesar Augusto, BORIOLO Shimomura Kawany Munique, et al. Development of poly(epsilon-polycaprolactone)/hydroxyapatite composites for bone tissue regeneration[J]. Journal of Materials Research, 2021. DOI: 10.1557/S43578-021-00316-0.
doi: 10.1557/S43578-021-00316-0
[20] PARK So Hee, PARK Su A, KANG Yun Gyeong, et al. PCL/beta-TCP composite scaffolds exhibit positive osteogenic differentiation with mechanical stimulation[J]. Tissue Engineering and Regenerative Medicine, 2017,14(4):349-358.
doi: 10.1007/s13770-017-0022-9
[21] HSIEH Yi Ho, HSIEH Ming Fa, FANG Chih Hsiang, et al. Osteochondral regeneration induced by TGF-beta loaded photo cross-linked hyaluronic acid hydrogel infiltrated in fused deposition-manufactured composite scaffold of hydroxyapatite and poly(ethylene glycol)-block-poly(epsilon-caprolactone)[J]. Polymers, 2017,9(5):182.
doi: 10.3390/polym9050182
[22] GOMEZ-LIZARRAGA Karla K, FLORES-MORALES Carlos, PRADO-AUDELO María L Del, et al. Polycaprolactone-and polycaprolactone/ceramic-based 3D-bioplotted porous scaffolds for bone regeneration: a comparative study[J]. Materials Science & Engineering C-Materials for Biological Applications, 2017,79:326-335.
[23] MOREIRA Ana Paula Duarte, SADER Márcia Soares, SOARES Gloria Dulce de Almeida, et al. Strontium incorporation on microspheres of alginate/beta-tricalcium phosphate as delivery matrices[J]. Materials Research-Ibero-American Journal of Materials, 2014,17(4):67-73.
[24] XING Jun, WANG Qiyou, HE Tianrui, et al. Polydopamine-assisted immobilization of copper ions onto hemodialysis membranes for antimicrobial[J]. ACS Applied Bio Materials, 2018,1(5):1236-1243.
doi: 10.1021/acsabm.8b00106
[25] 刘勇. 聚多巴胺/成骨生长肽功能化的纳米纤维支架的构建及其成骨性能研究[D]. 苏州:苏州大学, 2020: 24-28.
LIU Yong. Polydopamine-modified poly(L-lactic acid) nanofiber scaffolds immobilized with an osteogenic growth peptide for bone tissue regeneration[D]. Suzhou: Soochow University, 2020: 24-28.
[26] WANG Peng, YIN Huamo, LI Xiang, et al. Simultaneously constructing nanotopographical and chemical cues in 3D-printed polylactic acid scaffolds to promote bone regeneration[J]. Materials Science & Engineering C-Materials for Biological Applications, 2021,118:111457.
[27] LIU Laijun, ZHANG Tianian, LI Chaojing, et al. Regulating surface roughness of electrospun poly(epsilon-caprolactone)/beta-tricalcium phosphate fibers for enhancing bone tissue regeneration[J]. European Polymer Journal, 2021,143:110201.
doi: 10.1016/j.eurpolymj.2020.110201
[28] SCHULTE Carsten, PODESTA Alessandro, LENARDI Cristina, et al. Quantitative control of protein and cell interaction with nanostructured surfaces by cluster assembling[J]. Accounts of Chemical Research, 2017,50(2):231-239.
doi: 10.1021/acs.accounts.6b00433 pmid: 28116907
[29] LIU Hua, LI Wenling, LUO Binghong, et al. Icariin immobilized electrospinning poly(L-lactide) fibrous membranes via polydopamine adhesive coating with enhanced cytocompatibility and osteogenic activity[J]. Materials Science and Engineering: C, 2017,79:399-409.
doi: 10.1016/j.msec.2017.05.077
[30] LIU Shuyu, XU Xia, LIANG Shujing, et al. The application of MSCs-derived extracellular vesicles in bone disorders: novel cell-free therapeutic strategy[J]. Frontiers in Cell and Developmental Biology, 2020,8:619.
doi: 10.3389/fcell.2020.00619 pmid: 32793590
[31] LI Wenyue, LIU Yunsong, ZHANG Ping, et al. Tissue-engineered bone immobilized with human adipose stem cells-derived exosomes promotes bone regeneration[J]. ACS Applied Materials & Interfaces, 2018,10(6):5240-5254.
[1] 金旭, 刘方, 杜嬛, 华超, 公旭中, 张秀芹, 汪滨. 纳米纤维负载型纳米零价铁基材料在环境修复中的应用研究进展[J]. 纺织学报, 2022, 43(03): 201-209.
[2] 张爱琴, 郝佳程, 王芷, 王永超, 刘淑强, 董海亮, 贾虎生, 许并社. 键合型高分子荧光纤维的制备及其荧光增强机制[J]. 纺织学报, 2022, 43(03): 50-57.
[3] 陶旭晨, 李林, 徐珍珍. 杯芳烃/还原氧化石墨烯纤维的制备及其选择性吸附性能[J]. 纺织学报, 2022, 43(03): 64-70.
[4] 周筱雅, 马定海, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 闫涛. 涤纶/聚酰胺6纳米纤维包覆纱的连续制备及其应用[J]. 纺织学报, 2022, 43(02): 110-115.
[5] 徐兆宝, 何翠, 赵瑾朝, 黄乐平. 同轴静电纺多级微纳米纤维膜的制备及其相变调温性能[J]. 纺织学报, 2022, 43(02): 69-73.
[6] 吕丽华, 李臻, 张多多. 废弃秸秆/聚己内酯吸声复合材料的制备与性能[J]. 纺织学报, 2022, 43(01): 28-35.
[7] 许仕林, 杨世玉, 张亚茹, 胡柳, 胡毅. 热塑性聚氨酯/特氟龙无定形氟聚物超疏水纳米纤维膜制备及其性能[J]. 纺织学报, 2021, 42(12): 42-42.
[8] 贾琳, 王西贤, 李环宇, 张海霞, 覃小红. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41.
[9] 王曙东, 董青, 王可, 马倩. 还原氧化石墨烯增强聚乳酸纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 28-33.
[10] 周园园, 郑煜铭, 吴小琼, 邵再东. 静电纺纳米纤维光催化剂性能增强方法的研究进展[J]. 纺织学报, 2021, 42(11): 179-186.
[11] 吴钦鑫, 侯成义, 李耀刚, 张青红, 秦宗益, 王宏志. 辐射降温纳米纤维医用防护服面料及传感系统集成[J]. 纺织学报, 2021, 42(09): 24-30.
[12] 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45.
[13] 曹元鸣, 郑蜜, 李一飞, 翟旺宜, 李丽艳, 常朱宁子, 郑敏. 二硫化钼/聚氨酯复合纤维膜的制备及其光热转换性能[J]. 纺织学报, 2021, 42(09): 46-51.
[14] 朱小威, 韦天琛, 邢铁玲, 陈国强. 非晶光子晶体结构色织物的制备及其数值模拟[J]. 纺织学报, 2021, 42(09): 90-96.
[15] 张亚茹, 胡毅, 程钟灵, 许仕林. 聚丙烯腈基Si/C/碳纳米管复合碳纳米纤维膜的制备及其储能性能[J]. 纺织学报, 2021, 42(08): 49-56.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!