纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 183-188.doi: 10.13475/j.fzxb.20211103706

• 染整与化学品 • 上一篇    下一篇

全水基杂化型无氟防水剂制备及其在涤/棉织物防水整理中应用

马逸平1,2, 樊武厚1,2(), 吴晋川3, 蒲宗耀3   

  1. 1.四川省纺织科学研究院有限公司, 四川 成都 610083
    2.高技术有机纤维四川省重点实验室,四川 成都 610083
    3.四川益欣科技有限责任公司, 四川 成都 610083
  • 收稿日期:2021-11-05 修回日期:2021-11-17 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 樊武厚
  • 作者简介:马逸平(1994—),女,助理工程师,硕士。主要研究方向为无氟防水整理剂。
  • 基金资助:
    四川省省级科研院所科技成果转化项目(2020JDZH0004);四川省重点研发项目(22ZDYF3693)

Preparation and application of fully aqueous organic-inorganic hybrid fluorine-free water-repellant finishing agents

MA Yiping1,2, FAN Wuhou1,2(), WU Jinchuan3, PU Zongyao3   

  1. 1. Sichuan Textile Scientific Research Institute Co., Ltd., Chengdu, Sichuan 610083, China
    2. High-tech Organic Fibers Key Laboratory of Sichuan Province, Chengdu, Sichuan 610083, China
    3. Sichuan Yixin Technology Co., Ltd., Chengdu, Sichuan 610083, China
  • Received:2021-11-05 Revised:2021-11-17 Published:2022-02-15 Online:2022-03-15
  • Contact: FAN Wuhou

摘要:

针对当前有机-无机杂化型无氟织物防水剂含的有机溶剂存在环境不友好的问题,创新性地将长碳链硅烷改性硅溶胶(H-NPs)乳液与聚硅氧烷改性水性聚氨酯(SiWPU)相结合,制备出一种全水基的杂化型无氟织物防水剂。重点研究了全水基杂化无氟防水剂中有机/无机组分比例及其用于涤/棉织物整理时焙烘温度和时间等因素的影响,通过扫描电子显微镜观察了涤/棉织物整理前后纤维表面的形貌变化,并考察了其在涤/棉织物防水整理中的应用性能。结果表明:疏水整理织物的水接触角随着H-NPs质量分数的增加而逐渐增大,并在H-NPs质量分数为27.5%时达到最大值(138 ± 2.0)°;在相同焙烘时间下,180 ℃焙烘的疏水整理织物相比150 ℃焙烘时具有更大的水接触角;同时,整理织物的水接触角随着焙烘时间增加逐渐增大,并在焙烘5 min时具有最大的水接触角;疏水整理织物的纤维表面可明显观察到微纳米尺度的凸起结构,验证了其微纳粗糙结构的存在。

关键词: 有机-无机杂化, 无氟防水剂, 水基, 涤/棉织物, 水性聚氨酯, 硅溶胶

Abstract:

In view of the problem that organic-inorganic hybrid fluorine-free water-repellant finishing agents are not environmental friendly due to organic solvent, the long-chain alkyl silane modified sol (H-NPs) emulsion and polysiloxane modified waterborne polyurethane(SiWPU) emulsion were combined to prepare fully aqueous organic-inorganic hybrid fluorine-free water-repellant finishing agents. The effects of organic/inorganic component ratio in organic-inorganic hybrid fluorine-free water-repellant finishing agents were studied, and the influences of baking time and temperature on the property of finished polyester/cotton fabric were also discussed in detail. Micro-nano rough structures on the surface of finished polyester/cotton fabric were observed by SEM, and its application performance was also investigated. The results reveal that the water contact angle on the surface of the finished fabric gradually increases with the increase of H-NPs mass fraction, reaching the maximum value of (138 ± 2.0)° when H-NPs mass fraction is 27.5%. For the same baking time, the finished fabric baked at 180 ℃ demonstrates a higher water contact angles compared with that baked at 150 ℃. Additionaly, the water contact angle of the finished fabric increases gradually with baking time, with the optimal baking time determined to be 5 min. The convex structure of micro/nano scale is also observed on the surface of finished fabric, significantly verifing the existence of micro/nano rough structure.

Key words: organic-inorganic hybrid, fluorine-free water-repellant finishing agents, fully aqueous, polyester/cotton fabric, waterborne polyurethane, silicon sol

中图分类号: 

  • TQ316.334

图1

SiWPU和IPDI的红外图谱"

图2

H-NPs、TEOS和HDTMS的红外图谱"

图3

SiWPU乳液的粒径分布图"

图4

H-NPs乳液的粒径分布图"

图5

H-NPs质量分数对整理织物水接触角的影响"

图6

焙烘时间和焙烘温度对整理织物水接触角的影响"

图7

原始织物,整理织物的水滴和接触角图片 注:a为原始织物表面水滴图片;b为原始织物表面接触角图片;c为整理织物表面水滴图片;d为整理织物表面水滴接触角图片。"

图8

原始织物和整理织物的电镜照片"

[1] WANG Q, YU F, HUANG X K, et al. Low temperature self-cleaning properties of superhydrophobic sur-faces[J]. Applied Surface Science, 2014, 31(7): 1107-1112.
[2] AFZA L, MICHAEL D, FENG G, et al. Superhydrophobic and photocatalytic self-cleaning cotton[J]. Journal of Materials Chemistry A, 2014, 24(2): 18005-18011.
[3] 郭宁, 殷允杰, 任杰生, 等. 电化学驱动水溶胶原位沉积棉织物的超疏水机制及其性能[J]. 纺织学报, 2015, 36(2): 92-97.
GUO Ning, YIN Yunjie, REN Jiesheng, et al. Superhydrophobic mechanism and properties of cotton fabric deposited by electrochemically driven fluorine-free aqueous sol[J]. Journal of Textile Research, 2015, 36(2): 92-97.
[4] LI F, ZHENG Y, LIU J, et al. Intelligent self-healing superhydrophobic modification of cotton fabrics via surface-initiated ARGET ATRP of styrene[J]. Chemical Engineering Journal, 2017, 3(23): 134-142.
[5] LI G, QU F, GUO M, et al. Correction to "oil/water separation performances of superhydrophobic and superoleophilic sponges"[J]. Langmuir, 2015, 31(36): 10112-10112.
doi: 10.1021/acs.langmuir.5b02524
[6] LI A, TANG Z, GUO Z, et al. Stable and self-healing superhydrophobic MnO2@fabrics: applications in self-cleaning, oil/water separation and wear resistance[J]. Journal of Colloid and Interface Science, 2017, 50(3): 124-130.
[7] 王海峰, 武迪, 张小玲, 等. 有机硅嵌段水性聚氨酯整理剂的合成和应用[J]. 印染, 2017(3): 37-40.
WANG Haifeng, WU Di, ZHANG Xiaoling, et al. Synjournal and application of organosilicon block waterborne polyurethane finishing agent[J]. China Dyeing & Finishing, 2017(3): 37-40.
[8] YE H, WANG J, LIANG F, et al. Simple spray deposition of a water-based superhydrophobic coating with high stability for flexible applications[J]. Journal of Materials Chemistry A, 2017, 5(20): 9882-9890.
doi: 10.1039/C7TA02118F
[9] XU H, ZHENG B, FAN H, et al. Fluorine-free Superhydrophobic coatings with pH-induced wettability transition for controllable oil-water separa-tion[J]. ACS Applied Materials & Interfaces, 2016, 8(8): 5661-5667.
[10] ZHOU M, MA X, WU P, et al. Robust and durable superhydrophobic cotton fabrics for oil/water separation[J]. ACS Applied Materials & Interfaces, 2013, 5(15): 7208-7214.
[11] GUO B, FENG X J, ZHU P H, et al. Simple one-pot approach toward robust and boiling-water resistant superhydrophobic cotton fabric and the application in oil/water separation[J]. Journal of Materials Chemistry A, 2017, 5(41): 21866-21874.
doi: 10.1039/C7TA05599D
[12] WANG J F, LIU Y, FANG Z, et al. Corrosion-mediated self-assembly (CMSA): direct writing towards sculpturing of 3D tunable functional nanostructures[J]. Angewandte Chemie International Edition, 2015, 54(52): 15804-15808.
doi: 10.1002/anie.v54.52
[13] DONG Y K, HAN J, KIM J, et al. Extraordinary drag-reducing effect of a superhydrophobic coating on a macroscopic model ship at high speed[J]. Journal of Materials Chemistry A, 2013, 1(19): 5886-5891.
doi: 10.1039/c3ta10225d
[14] SHEN D, HAN Y, LI M, et al. Icephobic/anti-icing potential of superhydrophobic Ti6Al4V surfaces with hierarchical textures[J]. RSC Advances, 2015, 5(3): 1666-1672.
doi: 10.1039/C4RA12150C
[15] BAE Y M, KIM H S, LEE H, et al. Fabrication of hierarchical structures on a polymer surface to mimic natural superhydrophobic surfaces[J]. Advanced Materials, 2007, 19(17): 2330-2335.
doi: 10.1002/(ISSN)1521-4095
[16] REN J J, GUO F, HU F, et al. A simple way to an ultra-robust superhydrophobic fabric with mechanical stability, UV durability, and UV shielding property[J]. Journal of Colloid and Interface Science, 2018, 52(2): 57-62.
[17] ZHU M, XIAO B F, SHEN Z, et al. Facile fabrication of a superhydrophobic fabric with mechanical stability and easy-repairability[J]. Journal of Colloid and Interface Science, 2012, 380(1): 182-186.
doi: 10.1016/j.jcis.2012.04.063
[18] WANG D, SHAN F, LI G, et al. Definition of superhydrophobic states[J]. Advanced Materials, 2007, 19(21): 3423-3424.
doi: 10.1002/(ISSN)1521-4095
[19] LENG B, JIA F, ZHANG K, et al. Superoleophobic cotton textiles[J]. Langmuir, 2009, 25(4): 2456-2460.
doi: 10.1021/la8031144
[1] 刘淑强, 靖逸凡, 杨雅茹, 吴改红, 余娟娟, 王凯文, 李惠敏, 李甫, 张曼. 自修复双层微胶囊的制备及其在玄武岩织物上的应用[J]. 纺织学报, 2021, 42(04): 127-131.
[2] 丁子寒, 邱华. 纳米二氧化硅改性水性聚氨酯防水透湿涂层织物的制备及其性能[J]. 纺织学报, 2021, 42(03): 130-135.
[3] 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111.
[4] 高晶, 张俊, 赵泽阳, 李婉迪, 王佳珺, 王璐. 氧化石墨烯协同TiO2/SiO2改性涤/棉织物的抗菌持久性与服用性[J]. 纺织学报, 2019, 40(10): 120-126.
[5] 徐艳, 籍晓倩, 陈坤林, 王潮霞. 自着色水性聚氨酯制备及其在棉织物涂层中的应用[J]. 纺织学报, 2019, 40(07): 85-89.
[6] 徐成书 同晓妮 蔡再生 陈前维 邢建伟 任燕. 线性聚醚嵌段氨基硅油改性水性聚氨酯抗起毛起球剂的合成及其应用[J]. 纺织学报, 2018, 39(09): 84-89.
[7] 刘素素 姜蕾 隋晓锋 毛志平 徐红 张琳萍 钟毅. 水性聚氨酯-丙烯酸酯包覆颜料色浆在涂料染色中的应用[J]. 纺织学报, 2018, 39(09): 71-76.
[8] 赵宝宝 钱晓明 钱幺 范金土 封严 朵永超. 水性聚氨酯机械发泡涂层的响应面法优化制备[J]. 纺织学报, 2018, 39(07): 95-099.
[9] 蒲泽佳 周向东. 聚丙烯酸酯改性硅溶胶的合成及其应用性能[J]. 纺织学报, 2017, 38(05): 86-92.
[10] 冯静静 柴春鹏 葛震 罗运军. 耐静水压阻燃水性聚氨酯织物涂层剂的制备及其性能[J]. 纺织学报, 2016, 37(05): 92-96.
[11] 狄剑锋 刘裕文 纪凤龙. 交联型有机硅改性聚氨酯丙烯酸酯乳液的合成及其性能[J]. 纺织学报, 2016, 37(01): 75-80.
[12] 曹机良 孟春丽 程献伟 崔美铃. 涤/棉织物靛蓝染料同色染色工艺[J]. 纺织学报, 2015, 36(07): 66-70.
[13] 殷允杰 王潮霞. 废旧氨纶丝液掺杂硅溶胶整理棉织物的性能[J]. 纺织学报, 2013, 34(4): 80-84.
[14] 王志佳, 陈英. 不同添加剂对防水透湿涂层整理的影响[J]. 纺织学报, 2012, 33(6): 66-70.
[15] 丁磊;付少海;张霞;田安丽;王潮霞. 基于相分离技术超细包覆分散染料分散体的制备[J]. 纺织学报, 2011, 32(4): 62-65.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 王亚;卢雨正;高卫东. 织物柔软度的等级划分[J]. 纺织学报, 2008, 29(11): 44 -47 .
[2] 王乐军 刘怡宁 房迪 李增俊 吕佳滨. Lyocell纤维的国内外研发现状与发展方向[J]. 纺织学报, 2017, 38(04): 164 -170 .
[3] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175 -180 .
[4] 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20 -25 .
[5] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26 -32 .
[6] 李辉芹, 张楠, 温晓丹, 巩继贤, 赵晓明, 王支帅. 纤维材料降噪结构体的研究进展[J]. 纺织学报, 2020, 41(03): 175 -181 .
[7] 张星, 刘金鑫, 张海峰, 王玉晓, 靳向煜. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(03): 168 -174 .
[8] 孙焕惟, 张恒, 甄琪, 朱斐超, 钱晓明, 崔景强, 张一风. 丙烯基纳微米弹性过滤材料的熔喷成型及其过滤性能[J]. 纺织学报, 2020, 41(10): 20 -28 .
[9] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95 -100 .
[10] 高猛, 王增元, 漏琦伟, 陈钢进. 电晕驻极熔喷聚丙烯驻极体非织造布的电荷捕获特性[J]. 纺织学报, 2021, 42(09): 52 -58 .