纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 189-195.doi: 10.13475/j.fzxb.20211103907

• 染整与化学品 • 上一篇    下一篇

外电场极化银-钛酸钡/涤纶织物制备及其光催化性能

杨腾祥1, 申国栋1,2(), 钱利江2, 胡华军2, 毛雪1,3, 孙润军1,3   

  1. 1.西安工程大学 纺织科学与工程学院, 陕西 西安 710048
    2.浙江绍兴永利印染有限公司,浙江 绍兴 312073
    3.西安工程大学 智能纺织材料与制品国家重点实验室, 陕西 西安 710048
  • 收稿日期:2021-11-05 修回日期:2021-11-15 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 申国栋
  • 作者简介:杨腾祥(1998—),男,硕士生。主要研究方向为纳米光催化材料的合成、改性及光催化机制。
  • 基金资助:
    陕西省自然科学基础研究计划资助项目(2021JQ-681);中国纺织工业联合会科技指导性项目(2020002);陕西省教育厅专项科研计划项目(18JK0335)

External electric field polarized Ag-BaTiO3/polyester fabric and its photocatalytic properties

YANG Tengxiang1, SHEN Guodong1,2(), QIAN Lijiang2, HU Huajun2, MAO Xue1,3, SUN Runjun1,3   

  1. 1. School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
    2. Zhejiang Shaoxing Yongli Printing and Dyeing Co., Ltd., Shaoxing, Zhejiang 312073, China
    3. State Key Laboratory of Intelligent Textile Material and Products, Xi'an Polytechnic University, Xi'an, Shaanxi 710048, China
  • Received:2021-11-05 Revised:2021-11-15 Published:2022-02-15 Online:2022-03-15
  • Contact: SHEN Guodong

摘要:

为降低光生载流子的二次复合,提高粉体光催化剂降解印染废水后的可回收性,利用施加外电场极化与表面沉积贵金属改性法制备银-钛酸钡(Ag-BaTiO3)纳米粉体,以涤纶织物为基体制备涤纶基Ag-BaTiO3复合材料(Ag-BaTiO3/涤纶织物)。对材料的微观结构和形貌进行表征,以活性黄X-B染料为目标降解物,评价极化前后Ag-BaTiO3/涤纶织物的光催化性能。结果表明:Ag-BaTiO3纳米颗粒均匀沉积在涤纶织物表面,表面沉积贵金属Ag提高了BaTiO3的可见光吸收活性;经外加电场极化处理后,Ag-BaTiO3的剩余极化强度由1.61 μC/cm2增加至4.22 μC/cm2;Ag-BaTiO3/涤纶织物对目标染料的降解率由88.36%提升至99.36%。

关键词: Ag-BaTiO3, 粉体光催化剂, 外电场极化, 涤纶织物, 光催化性能

Abstract:

In order to reduce the secondary recombination of photon-generated charge carriers and improve the recyclability of powder photocatalysts after degrading dyeing and printing wastewater, Ag-BaTiO3 nano powder was prepared by applying external electric field polarization with surface deposition of precious metal. Polyester-based Ag-BaTiO3 composite materials (Ag-BaTiO3/polyester fabric) were prepared with polyester fabric as substrate, and the microstructure and morphology of composite materials were characterized. Meanwhile, the photocatalytic properties of Ag-BaTiO3/polyester fabric before and after polarization were evaluated reactive yellow X-B dye as degradation object. The results show that Ag-BaTiO3 nano particles are deposited evenly on the polyester fabric surface. The surface deposition of precious metal Ag improves the visible light absorption activity of BaTiO3. The residual polarization strength of Ag-BaTiO3 increases from 1.61 μC/cm2 to 4.22 μC/cm2, and the degradation ratio of Ag-BaTiO3/polyester fabric over the target dye increases from 88.36% to 99.36% by applying external electric field polarization treatment.

Key words: Ag-BaTiO3, power photocatalysts, external electric field polarization, polyester fabric, photocatalytic degradation

中图分类号: 

  • TS151

图1

BaTiO3、Ag-BaTiO3、涤纶织物、BaTiO3/涤纶织物和Ag-BaTiO3/涤纶织物的XRD图谱"

图2

BaTiO3、Ag-BaTiO3、涤纶织物和织物基复合光催化材料SEM和TEM图"

图3

BaTiO3和Ag-BaTiO3的XPS图谱"

图4

外加电场极化前后的电滞回线对比图"

图5

BaTiO3和Ag-BaTiO3的紫外-可见光漫反射吸收光谱图"

图6

粉体光催化剂和涤纶织物基复合光催化材料光降解活性黄X-B染料效果"

[1] KESKIN B, ERSAHIN M E, OZGUN H, et al. Pilot and full-scale applications of membrane processes for textile wastewater treatment: a critical review[J]. Journal of Water Process Engineering, 2021, 42(1): 102172.
doi: 10.1016/j.jwpe.2021.102172
[2] THANGARAJ S, BANKOLE P O, SADASIVAM S K. Microbial degradation of azo dyes by textile effluent adapted, enterobacter hormaechei under microaerophilic condition[J]. Microbiological Research, 2021, 250(1): 126805.
doi: 10.1016/j.micres.2021.126805
[3] HAN Taixing, ZHENG Jingjing, HAN Yutong, et al. Comprehensive insights into core microbial assemblages in activated sludge exposed to textile-dyeing wastewater stress[J]. Science of the Total Environment, 2021, 791:148145.
doi: 10.1016/j.scitotenv.2021.148145
[4] ZENG Qian, WANG Yu, ZAN Feixiang, et al. Biogenic sulfide for azo dye decolorization from textile dyeing wastewater[J]. Chemosphere, 2021, 283(4): 131158.
doi: 10.1016/j.chemosphere.2021.131158
[5] XIONG Shu, HAN Chao, PHOMMACHANH A, et al. High-performance loose nanofiltration membrane prepared with assembly of covalently cross-linked polyethyleneimine-based polyelectrolytes for textile wastewater treatment[J]. Separation and Purification Technology, 2021, 274:119105.
doi: 10.1016/j.seppur.2021.119105
[6] 张家琳. 二氧化钛光电极的制备及光电催化脱色纺织印染废水的研究[D]. 无锡: 江南大学, 2020: 1-2.
ZHANG Jialin. preparation of titanium dioxide photocatalyst and its application in decolorization of textile printing and dyeing wastewater[D]. Wuxi: Jiangnan University, 2020: 1-2.
[7] DOMINGUES F S, GERALDINO H C, FREITAS T K, et al. Photocatalytic degradation of real textile wastewater using carbon black-Nb2O5composite catalyst under UV/Vis irradiation[J]. Environmental Technology, 2021, 42(15): 2335-2349.
doi: 10.1080/09593330.2019.1701565
[8] MUHAMMAD S, ZAFAR M, AHMED A, et al. Castor leaves-based biochar for adsorption of safranin from textile wastewater[J]. Sustainability, 2021, 13(12): 6926.
doi: 10.3390/su13126926
[9] JIANG Hongquan, SUN Jianzhe, ZANG Shuying, et al. Constructing broad spectrum response ROQDs/Bi2WO6/CQDs heterojunction nanoplates: synergetic mechanism of boosting redox abilities for photocatalytic degradation pollutant[J]. Journal of Environmental Chemical Engineering, 2021, 9(4): 105674.
doi: 10.1016/j.jece.2021.105674
[10] LIU Xiaofang, XIAO Longyin, ZHANG Yong, et al. Significantly enhanced piezo-photocatalytic capability in BaTiO3 nanowires for degrading organic dye[J]. Journal of Materiomics, 2020, 6(2): 256-262.
doi: 10.1016/j.jmat.2020.03.004
[11] VU T T, RÍO L D, VALDÉS-SOLÍS T, et al. Tailoring the synjournal of stainless steel wire mesh-supported ZnO[J]. Materials Research Bulletin, 2012, 47(6): 1577-1586.
doi: 10.1016/j.materresbull.2012.02.017
[12] XU Tingting, LIU Xuan, WANG Shulan, et al. Ferroelectric oxide nanocomposites with trimodal pore structure for high photocatalytic performance[J]. Nano-Micro Letters, 2019, 11(3): 5-20.
doi: 10.1007/s40820-018-0233-1
[13] SENTHIL V, PANIGRAHI S. Dielectric, ferroelectric, impedance and photocatalytic water splitting study of Y3+ modified SrBi2Ta2O9 ferroelectrics[J]. International Journal of Hydrogen Energy, 2019, 44(33): 18058-18071.
doi: 10.1016/j.ijhydene.2019.05.064
[14] MORRIS M R, PENDLEBURY S R, HONG J, et al. Effect of internal electric fields on charge carrier dynamics in a ferroelectric material for solar energy conversion[J]. Advanced Materials, 2016, 28:7123-7128.
doi: 10.1002/adma.v28.33
[15] SU Ran, SHEN Yajing, LI Linglong, et al. Silver-modified nanosized ferroelectrics as a novel photocata-lyst[J]. Small, 2015, 11:202-207.
doi: 10.1002/smll.201401437 pmid: 25186805
[16] SHEN Guodong, PU Yongpin, CUI Yongfei, et al. Effect of ferroelectric Ba0.8Sr0.2TiO3 on the charge carrier separation of BiOBr at different temperature[J]. Applied Surface Science, 2021, 550:149366.
doi: 10.1016/j.apsusc.2021.149366
[17] ZHANG Yuhan, SHEN Guodong, SHENG Cuihong, et al. The effect of piezo-photocatalysis on enhancing the charge carrier separation in BaTiO3/KNbO3 heterostructure photocatalyst[J]. Applied Surface Science, 2021, 562:150164.
doi: 10.1016/j.apsusc.2021.150164
[18] 吴化平, 令欢, 张征, 等. 铁电材料光催化活性的研究进展[J]. 物理学报, 2017, 66(16): 277-286.
WU Huaping, LING Huan, ZHANG Zheng, et al. Research progress on photocatalytic activity of ferroelectric materials[J]. Acta Physica Sinica, 2017, 66(16): 277-286.
[19] 崔宗杨, 谢忠帅, 汪尧进, 等. 钙钛矿铁电半导体的光催化研究现状及其展望[J]. 物理学报, 2020, 69(12): 51-83.
CUI Zongyang, XIE Zhongshuai, WANG Yaojin, et al. Research status and prospect of photocatalysis of perovskite ferroelectric semiconductor[J]. Acta Physica Sinica, 2020, 69(12): 51-83.
[20] YE Shangshi, CHEN Yingxu, YAO Xiaoling, et al. Simultaneous removal of organic pollutants and heavy metals in wastewater by photoelectrocatalysis: a review[J]. Chemosphere, 2021, 273:128503-128503.
doi: 10.1016/j.chemosphere.2020.128503 pmid: 33070977
[21] SINGH J, SONI R K. Efficient charge separation in Ag nanoparticles functionalized ZnO nanoflakes/CuO nanoflowers hybrids for improved photocatalytic and SERS activity[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2021, 626:127005.
doi: 10.1016/j.colsurfa.2021.127005
[22] RHAMAN M M, GANGULI S, BERA S, et al. Visible-light responsive novel WO3/TiO2 and Au loaded WO3/TiO2 nanocomposite and wastewater remediation: Mechanistic inside and photocatalysis pathway[J]. Journal of Water Process Engineering, 2020, 36:101256.
doi: 10.1016/j.jwpe.2020.101256
[23] 朱明玥. 负载锥状钛酸盐的聚丙烯腈纳米纤维膜的制备及其光催化性能研究[D]. 苏州: 苏州大学, 2020: 6-16.
ZHU Mingyue. Preparation and photocatalytic performance of cone shaped titanate/PAN nano-fiber[D]. Suzhou: Soochow University, 2020: 6-16.
[24] 俞幼萍, 刘保江, 何瑾馨. FeVO4负载型棉织物的制备及其光催化降解性[J]. 印染, 2016, 42:7-13.
YU Youping, LIU Baojiang, HE Jinxin. FeVO4 preparation and photocatalytic degradability of loaded cotton fabric[J]. China Dyeing & Finishing, 2016, 42:7-13.
[25] DONG Guoqing, WANG Yanan, LEI Huanyu, et al. Hierarchical mesoporous titania nanoshell encapsulated on polyimide nanofiber as flexible, highly reactive, energy saving and recyclable photocatalyst for water purification[J]. Journal of Cleaner Production, 2020, 253:120021.
doi: 10.1016/j.jclepro.2020.120021
[26] 郭庆峰, 孙红蕊, 李登新. 织物基CNT/BiVO4光催化材料的制备及其在可见光下对染料的降解[J]. 印染, 2021, 47(3): 60-64.
GUO Qingfeng, SUN Hongrui, LI Dengxin. Preparation of fabric-based CNT/BiVO4 photocatalytic materials and their degradation of dyes under visible light[J]. China Dyeing & Finishing, 2021, 47(3): 60-64.
[27] 李鹏飞. 涤纶织物的亲水整理研究[D]. 柳州: 广西科技大学, 2019: 45.
LI Pengfei. Study on hydrophilic finishing of polyester fabric[D]. Liuzhou: Guangxi University of Science and Technology, 2019: 45.
[28] YU Donghui, YU Xiaodan, WANG Changhua, et al. Synjournal of natural cellulose-templated TiO2/Ag nanosponge composites and photocatalytic properties[J]. ACS Applied Materials & Interfaces, 2012, 4(5): 2781-2787.
[1] 谢爱玲, 乐昱含, 艾馨, 王亚辉, 王义容, 陈新彭, 陈国强, 邢铁玲. 茶多酚改性超疏水涤纶织物制备及其在油水分离中的应用[J]. 纺织学报, 2022, 43(02): 162-170.
[2] 朱兰芳, 白洁, 周吟澄, 侯成伟. 超声波处理对涤纶织物聚氨酯涂层中4,4'-二氨基二苯甲烷的影响[J]. 纺织学报, 2021, 42(11): 124-128.
[3] 普丹丹, 傅雅琴. 涤纶织物/聚氯乙烯-中空微珠复合材料的制备及其隔声性能[J]. 纺织学报, 2021, 42(11): 77-83.
[4] 戴沈华, 翁良, 李冰艳, 张建平, 杨旭红. 负载纳米ZnO的聚氨酯/聚酯纤维发泡复合绵的制备及其性能[J]. 纺织学报, 2021, 42(08): 96-101.
[5] 李亮, 刘静芳, 胡泽栋, 耿长军, 刘让同. 涤纶织物的氧化石墨烯负载及其抗静电性能[J]. 纺织学报, 2020, 41(09): 102-107.
[6] 刘国金, 韩朋帅, 柴丽琴, 吴钰, 李慧, 高雅芳, 周岚. 涤纶织物上自交联型P(St-NMA)光子晶体的构筑及其结构稳固性[J]. 纺织学报, 2020, 41(05): 99-104.
[7] 王晓菲, 万爱兰. 紫外线辐照聚吡咯/银导电涤纶织物的制备[J]. 纺织学报, 2020, 41(04): 112-116.
[8] 谭淋, 施亦东, 周文雅. 棉织物的硅溶胶疏水整理[J]. 纺织学报, 2020, 41(04): 106-111.
[9] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100-105.
[10] 罗佳妮, 李丽君, 张晓思, 邹汉涛, 刘雪婷. 氧化石墨烯掺杂TiO2改性活性炭纤维[J]. 纺织学报, 2020, 41(01): 8-14.
[11] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
[12] 徐林, 任煜, 张红阳, 吴双全, 李雅, 丁志荣, 蒋文雯, 徐思峻, 臧传锋. 涤纶织物表面TiO2/氟硅烷超疏水层构筑及其性能[J]. 纺织学报, 2019, 40(12): 86-92.
[13] 戴悦, 张瑞萍, 王秋萍, 胡亚楠, 张贤国. 柠檬酸/β-环糊精整理涤纶织物的消臭效果[J]. 纺织学报, 2019, 40(12): 104-108.
[14] 朱金铭, 钱建华, 孙丽颖, 李正平, 彭慧敏. 用高长径比银纳米线制备功能性复合涤纶织物及其性能[J]. 纺织学报, 2019, 40(11): 113-118.
[15] 辛民岳, 郑强, 吴江丹, 梁列峰. 同轴静电纺多孔氧化锌薄膜制备及其光催化性能[J]. 纺织学报, 2019, 40(10): 42-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 杨俊霞;张力. 包缠纱织物的设计与生产[J]. 纺织学报, 1990, 11(12): 32 -34 .
[2] 竺钦安. 上海地区和国外钢领发展概况[J]. 纺织学报, 1992, 13(07): 46 -47 .
[3] 李毅. 纺织品热湿舒适性能测试方法研究[J]. 纺织学报, 1984, 5(12): 5 -8 .
[4] 刘莉;张渭源;王永进. 调整型内衣压力对人体生理指标的影响[J]. 纺织学报, 2008, 29(11): 97 -102 .
[5] 杨文芳;王雷. 超临界CO2在PLA纤维染色中的应用[J]. 纺织学报, 2007, 28(10): 59 -63 .
[6] . GPC-1型钢领平面度激光检测仪和GYC-1型钢领圆度自动检测分选机通过技术鉴定[J]. 纺织学报, 1986, 7(11): 9 .
[7] 沈丹峰;叶国铭. 织造过程中经纱振动特性的分析[J]. 纺织学报, 2007, 28(5): 41 -46 .
[8] 李珂, 张健飞, 李秋瑾. 棉织物泡沫染色的过程控制与工艺优化[J]. 纺织学报, 2011, 32(12): 89 -93 .
[9] 赵玉萍, 张娟, 郭雅琳, 赵明. 基于响应面分析法的超声波洗涤羽毛纤维工艺条件优化[J]. 纺织学报, 2012, 33(7): 24 -30 .
[10] 王元丰 余弘 谭思思 钟毅 徐红 张琳萍 毛志平 王兴南. 棉织物泡沫染色工艺的筛选和优化[J]. 纺织学报, 2014, 35(3): 68 -0 .