纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 214-221.doi: 10.13475/j.fzxb.20211105002
摘要:
为进一步研究用于柔性智能可穿戴装置的低电阻、多功能、耐用时间长、安全性能好的导电纱线材料,以纱线为研究对象,综述了近年来利用纺纱技术、涂覆技术、涂覆与纺纱相结合技术、静电纺丝辅助技术等制备导电纱线材料的方法,分析了相关制备方法的优点与存在的不足,阐述了导电纱线材料在电磁防护、传感器件、储能器件、信号传输、电加热等柔性智能可穿戴器件中的应用。最后,结合导电纱线加工简便、量产化以及生命周期中的性能稳定性与环境安全性,提出了在不同应用领域导电纱线材料主要性能的改进方向,并展望了导电纱线材料未来的研究与发展趋势。
中图分类号:
[1] | 陶肖明, 刘苏, 杨宝, 等. 织物电子器件及系统的发展现状、科学问题、技术核心和应用展望[J]. 科学通报, 2021, 66(24):1-17. |
TAO Xiaoming, LIU Su, YANG Bao, et al. Recent advances, scientific issue, key technologies and perspective of textile electronics[J]. Chinese Science Bulletin, 2021, 66(24):1-17. | |
[2] |
MORSHED M N, ASADI M M, PERSSON N, et al. Development of a multifunctional graphene/ Fe-loaded polyester textile: robust electrical and catalytic properties[J]. Dalton Transactions, 2020, 49(47):17281-17300.
doi: 10.1039/D0DT03291C |
[3] |
AHMED A, HOSSAIN M M, ADAK B, et al. Recent advances in 2D MXene integrated smart-textile interfaces for multifunctional applications[J]. Chemistry of Materials, 2020, 32(24):10296-10320.
doi: 10.1021/acs.chemmater.0c03392 |
[4] | DU X, TIAN M, SUN G, et al. Self-powered and self-sensing energy textile system for flexible wearable applications[J]. ACS Applied Materials & Interfaces, 2020, 12(50): 55876-55883. |
[5] | 赵颖会, 武辰爽, 王亚洲, 等. MXene改性纺织品在柔性应变传感领域研究进展[J]. 纺织高校基础科学学报, 2022, 35(1):48-60. |
ZHAO Yinghui, WU Chenshuang, WANG Yazhou, et al. Research progress of MXene-modified textiles in the field of flexible strain sensing[J]. Basic Sciences Journal of Textile Universities, 2022, 35(1):48-60. | |
[6] | 蒋连意, 姚雪烽, 邢慧娇, 等. 石墨烯银层层组装纯棉导电纱及性能分析[J]. 棉纺织技术, 2019, 47(7):26-30. |
JAING Lianyi, YAO Xuefeng, XING Huijiao, et al. Manufacture of grapheme silver layer-by-layer assembled pure cotton conductive yarn and its property analyses[J]. Cotton Textile Technology, 2019, 47(7):26-30. | |
[7] | 温泽明, 代国亮, 陈剑英, 等. 液态金属涂覆的弹性导电纱线的制备及性能[J]. 北京服装学院学报(自然科学版), 2020, 40(3):9-14. |
WEN Zeming, DAI Guoliang, CHEN Jianying, et al. Preparation and properties of elastic conductive yarn coated by liquid metal[J]. Journal of Beijing Institute of Fashion Technology(Natural Science Edition), 2020, 40(3):9-14. | |
[8] |
SIMGE U, MARION S, KANIT H, et al. Additive-free aqueous MXene inks for thermal inkjet printing on textiles[J]. Small, 2021.DOI:10.1002/smll.2020063761.
doi: 10.1002/smll.2020063761 |
[9] |
CARNEIRO M R, ANIBAL T A, TAVAKOLI M. Wearable and comfortable e-textile headband for long-term acquisition of forehead EEG signals[J]. IEEE Sensors Journal, 2020, 20(24): 15107-15116.
doi: 10.1109/JSEN.7361 |
[10] | 熊莹, 陶肖明. 智能传感纺织品研究进展[J]. 针织工业, 2019(7):8-12. |
XIONG Ying, TAO Xiaoming. Research progress of smart sensing textiles[J]. Knitting Industries, 2019(7): 8-12. | |
[11] |
HOUSSEINOU B, LAI T, VASILIKI P, et al. Cotton fabrics coated with few-layer graphene as highly responsive surface heaters and integrated lightweight electronic-textile circuits[J]. ACS Applied Nano Materials, 2020, 3(10):9771-9783.
doi: 10.1021/acsanm.0c01861 |
[12] |
ASADI M M, TARIQ B, NILS-KRISTER P. Electrostatic grafting of graphene onto polyamide 6,6 yarns for use as conductive elements in smart textile applications[J]. New Journal of Chemistry, 2020, 44(18):7591-7601.
doi: 10.1039/C9NJ06437K |
[13] | 师奇松, 谢瑛鸾, 戴晔, 等. 静电纺丝制备荧光导电双功能复合纳米纤维及其表征[J]. 功能高分子学报, 2017, 30(1): 77-82. |
SHI Qisong, XIE Yingluan, DAI Ye, et al. Preparation and characterization of luminescene electrical bi-functional composite nanofibers via electrospinning technique[J]. Journal of Functional Polymers, 2017, 30(1):77-82. | |
[14] | 刘辅庭. 静电纺制造丝纳米纤维和静电喷雾制造导电纤维[J]. 现代丝绸科学与技术, 2018, 33(3):39-40. |
LIU Futing. Electrostatic spinning of silk nanofibers and electrostatic spraying of conductive fibers[J]. Modern Silk Science & Technology, 2018, 33(3):39-40. | |
[15] |
LIN J H, LIN T A, CHEN A P, et al. Electromagnetic shielding effectiveness of physical property PET/stainless steel composite fabrics[J]. Advanced Materials Research, 2014, 910: 210-213.
doi: 10.4028/www.scientific.net/AMR.910 |
[16] | LOU C W, LI T T, HWANG P W, et al. Preparation technique and EMI shielding evaluation of flexible conductive composite fabrics made by single and double wrapped yarns[J]. Journal of Engineered Fibers and Fabrics, 2017, 12(4):78-86. |
[17] | 赵亚茹, 肖红, 陈剑英. 不锈钢短纤维/棉包缠氨纶纱的弹性与电学性能[J]. 纺织学报, 2020, 41(3): 45-50. |
ZHAO Yaru, XIAO Hong, CHEN Jianying. Elastic and electrical properties of stainless steel fiber/cotton blended spandex wrap yarn[J]. Journal of Textile Research, 2020, 41(3): 45-50. | |
[18] | SHAHZAD A, RASHEED A, KHALIQ Z, et al. Processing of metallic fiber hybrid spun yarns for better electrical conductivity[J]. Materials and Manufacture Processes, 2019, 34(9):1008-1015. |
[19] |
YANG Y, YU W Y, WANG F. Structural design and physical characteristics of modified ring-spun yarns intended for-textiles: a comparative study[J]. Textile Research Journal, 2019, 89(2):121-132.
doi: 10.1177/0040517517741154 |
[20] | 张鲁燕, 杨莹莹, 侍康妮, 等. 不锈钢丝/桑蚕丝复合导电纱的制备与性能研究[J]. 丝绸, 2019, 56(3): 1-6. |
ZHANG Luyan, YANG Yingying, SHI Kangni, et al. Study on preparation and properties of stainless steel wire/silk composite conductive yarn[J]. Journal of Silk, 2019, 56(3): 1-6. | |
[21] |
GUO L, BERGLIN L, MATTILA H. Improvement of electro-mechanical properties of strain sensors made of elastic-conductive hybrid yarns[J]. Textile Research Journal, 2012, 82(19): 1937-1947.
doi: 10.1177/0040517512452931 |
[22] |
YANG T, WANG X, YANG Q, et al. Bioinspired temperature-sensitive yarn with highly stretchable capability for healthcare applications[J]. Advanced Materials Technology, 2021.DOI: 10.1002/admt.202001075.
doi: 10.1002/admt.202001075 |
[23] |
LEE H, ROH J. Wearable electromagnetic energy-harvesting textiles based on human walking[J]. Textile Research Journal, 2019, 89(13): 2532-2541.
doi: 10.1177/0040517518797349 |
[24] |
MA L, WU R, LIU S, et al. A machine-fabricated 3D honeycomb-structured flame-retardant triboelectric fabric for fire escape and rescue[J]. Advanced Materials, 2020.DOI: 10.1002/adma.202003897.
doi: 10.1002/adma.202003897 |
[25] | CHOI M, KIM J. Preparation and transmission characteristics of hybrid structure yarns with nylon fiber for smart wear[J]. Journal of Engineered Fibers and Fabrics, 2018, 13(2):39-45. |
[26] |
PEI Z, ZHANG Y, ZHEN C. A core-spun yarn containing a metal wire manufactured by a modified vortex spinning system[J]. Textile Research Journal, 2019, 89(1):113-118.
doi: 10.1177/0040517517736477 |
[27] |
SONG Y, XU W, RONG M, et al. A sunlight self-healable fibrous flexible pressure sensor based on electrically conductive composite wool yarns[J]. Express Polymer Letters, 2020, 14(11):1089-1104.
doi: 10.3144/expresspolymlett.2020.88 |
[28] |
ABED A, SAMOUH Z, COCHRANE C, et al. Piezo-resistive properties of bio-based sensor yarn made with sisal fibre[J]. Sensors, 2021.DOI:10.3390/s21124083.
doi: 10.3390/s21124083 |
[29] |
SOURI H, BHATTACHARYYA D. Highly stretchable and wearable strain sensors using conductive wool yarns with controllable sensitivity[J]. Sensors and Actuators A: Physical, 2019, 285: 142-148.
doi: 10.1016/j.sna.2018.11.008 |
[30] |
SOURI H, BHATTACHARYYA D. Wearable strain sensors based on electrically conductive natural fiber yarns[J]. Materials and Design, 2018, 154: 217-227.
doi: 10.1016/j.matdes.2018.05.040 |
[31] |
LIU Y, LI Z, FENG Y, et al. Scale production of conductive cotton yarns by sizing process and its conductive mechanism[J]. SN Applied Sciences, 2021.DOI:10.1007/s42452-021-04493-9.
doi: 10.1007/s42452-021-04493-9 |
[32] |
DATTA M, CHAUDHURIB A, MITRA M, et al. Development of biodegradable conductive cotton yarns by in-situ polymerisation of pyrrole[J]. Journal of The Textile Institute, 2019, 110(1):10-15.
doi: 10.1080/00405000.2018.1455312 |
[33] |
MA H, GAO Y, LIU W, et al. Light-weight strain sensor based on carbon nanotube/epoxy composite yarn[J]. Journal of Materials Science, 2021, 56: 13156-13164.
doi: 10.1007/s10853-021-06146-z |
[34] |
ISLAM G M N, COLLIE S, QASIM M, et al. Highly stretchable and flexible melt spun thermoplastic conductive yarn for smart textiles[J]. Nanomaterials, 2020.DOI:10.3390/NANO10122324.
doi: 10.3390/NANO10122324 |
[35] |
WU X D, HAN Y Y, ZHANG X X, et al. Highly sensitive, stretchable, and wash-durable strain sensor based on ultrathin conductive Layer@polyurethane yarn for tiny motion monitoring[J]. ACS Applied Materials Interfaces, 2016, 8: 9936-9945.
doi: 10.1021/acsami.6b01174 |
[36] |
ZHU G, REN P, GUO H, et al. Highly sensitive and stretchable polyurethane fiber strain sensors with embedded silver nanowires[J]. ACS Applied Materials Interfaces, 2019, 11: 23649-23658.
doi: 10.1021/acsami.9b08611 |
[37] |
ZHANG Y, ZHANG W, YE G, et al. Core-sheath stretchable conductive fibers for safe underwater wearable electronics[J]. Advanced Materials Technologies, 2019.DOI: 10.1002/admt.201900880.
doi: 10.1002/admt.201900880 |
[38] |
YANG Z, ZHAI Z, SONG Z, et al. Conductive and elastic 3D helical fibers for use in washable and wearable electronics[J]. Advanced Materials, 2020.DOI:10.1002/adma.201907495.
doi: 10.1002/adma.201907495 |
[39] |
LI T, WANG X, JIANG S, et al. Study on electromechanical property of polypyrrole-coated strain sensors based on polyurethane and its hybrid covered yarns[J]. Sensors and Actuators A: Physical, 2020.DOI:10.1016/j.sna.2020.111958.
doi: 10.1016/j.sna.2020.111958 |
[40] | PATTANARAT K, PETCHSANG N, OSATCHAN T, et al. Wash-durable conductive yarn with ethylene glycol-treated PEDOT:PSS for wearable electric heaters[J]. ACS Applied Materials & Interfaces, 2021, 40:48953-48060. |
[41] |
HWANG B, LUND A, TAIN Y, et al. Machine-washable conductive silk yarns with a composite coating of Ag nanowires and PEDOT:PSS[J]. ACS Applied Materials Interfaces, 2020, 12: 27537-27544.
doi: 10.1021/acsami.0c04316 |
[42] | 刘连梅, 赵健伟, 陈超. 聚苯胺-石墨烯/聚酰亚胺复合导电纱的制备以及超电容特性[J]. 复合材料学报, 2020, 37(4): 786-793. |
LIU Lianmei, ZHAO Jianwei, CHEN Chao. Preparation and supercapacitance characteristics of polyaniline-graphene/polyimide composite conductive yarn[J]. Acta Materiae Compositae Sinica, 2020, 37(4): 786-793. | |
[43] |
ZENG Z, HAO B, LI D, et al. Large-scale production of weavable, dyeable and durable spandex/CTN/cotton core-sheath yarn for wearable strain sensors[J]. Composites Part A: Applied Science and Manufacturing, 2021. DOI:10.1016/j.compositesa.2021.106520.
doi: 10.1016/j.compositesa.2021.106520 |
[44] |
DING X C, ZHONG W B, JIANG H Q, et al. Highly accurate wearable piezoresistive sensor without tension disturbance based on weaved conductive yarn[J]. ACS Applied Materials & Interfaces, 2020. DOI:10.1021/acsami.0c07928.
doi: 10.1021/acsami.0c07928 |
[45] |
MA Y, WANG Q, LIANG X, et al. Wearable supercapacitors based on conductive cotton yarns[J] Journal of Materials Science, 2018, 53: 14586-14597.
doi: 10.1007/s10853-018-2655-z |
[46] |
YANG M, PAN J, LUO L, et al. CNT/cotton composite yarn for electrothermochromic textiles[J]. Smart Materials and Structures, 2019. DOI: 10.1088/1361-665X/ab21ef.
doi: 10.1088/1361-665X/ab21ef |
[47] |
YANG M, FU C, XIA Z, et al. Conductive and durable CNT-cotton ring spun yarns[J]. Cellulose, 2018, 25:4239-4249.
doi: 10.1007/s10570-018-1839-7 |
[48] |
XUE L, FAN W, YU Y, et al. A novel strategy to fabricate core-sheath structure piezoelectric yarn for wearable energy harvesters[J]. Advanced Fiber Materials, 2021, 3: 239-250.
doi: 10.1007/s42765-021-00081-z |
[49] |
PENG H K, WU M M, WANG Y T, et al. Enhancing piezoelectricity of poly(vinylidene fluoride) nano-wrapped yarns with an innovative yarn electrospinning technique[J]. Polymer International, 2021, 70: 851-859.
doi: 10.1002/pi.v70.6 |
[50] | BUSOLO T, SZEWCZYK P K, NAIR M, et al. Triboelectric yarns with electrospun functional polymer coatings for highly durable and washable smart textile applications[J]. ACS Applied Materials & Interfaces, 2021, 13: 16876-16886. |
[51] |
ZHANG D W, YANG W F, GONG W, et al. Abrasion resistant/waterproof stretchable triboelectric yarns based on fermat spirals[J]. Advanced Materials, 2021. DOI:10.1002/adma.202100782.
doi: 10.1002/adma.202100782 |
[1] | 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25. |
[2] | 张晋, 张林军, 解云川, 王健, 贾寅峰, 路涛, 张志成. 防护口罩用改性长效聚(偏氟乙烯-三氟乙烯)压电纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 26-32. |
[3] | 王玉周, 周梦洁, 姜圆金, 陈家本, 李玥. 偕胺肟化聚丙烯腈纳米纤维膜的制备与油水乳液分离性能[J]. 纺织学报, 2023, 44(07): 42-49. |
[4] | 王青弘, 王迎, 郝新敏, 郭亚飞, 王美慧. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(06): 144-151. |
[5] | 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224. |
[6] | 史豪秦, 于影, 左雨欣, 刘宜胜, 左春柽. SnO2/聚乙烯吡咯烷酮防腐薄膜的制备及其在柔性铝-空气电池中的应用[J]. 纺织学报, 2023, 44(06): 33-40. |
[7] | 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49. |
[8] | 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56. |
[9] | 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76. |
[10] | 李好义, 贾紫初, 刘宇亮, 谭晶, 丁玉梅, 杨卫民, 牟文英. 高压静电加载形式对聚合物熔体静电直写制备效果的影响[J]. 纺织学报, 2023, 44(04): 32-37. |
[11] | 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18. |
[12] | 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27. |
[13] | 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35. |
[14] | 葛铖, 郑元生, 刘凯, 辛斌杰. 电压对静电纺串珠纤维成形过程的影响[J]. 纺织学报, 2023, 44(03): 36-41. |
[15] | 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78. |
|