纺织学报 ›› 2022, Vol. 43 ›› Issue (02): 69-73.doi: 10.13475/j.fzxb.20211105406

• 纤维材料 • 上一篇    下一篇

同轴静电纺多级微纳米纤维膜的制备及其相变调温性能

徐兆宝1, 何翠1, 赵瑾朝1(), 黄乐平2   

  1. 1.武汉纺织大学 生物质纤维与生态染整湖北省重点实验室, 湖北 武汉 430200
    2.武汉纺织大学 材料科学与工程学院, 湖北 武汉 430200
  • 收稿日期:2021-11-11 修回日期:2021-12-06 出版日期:2022-02-15 发布日期:2022-03-15
  • 通讯作者: 赵瑾朝
  • 作者简介:徐兆宝(1996—),男,硕士生。主要研究方向为功能纤维及纺织品设计。

Preparation of coaxially electrospun multi-level fiber membrane and its phase change temperature-regulating performance

XU Zhaobao1, HE Cui1, ZHAO Jinchao1(), HUANG Leping2   

  1. 1. Hubei Key Laboratory of Biomass Fibers and Eco-Dyeing & Finishing, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. School of Material Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
  • Received:2021-11-11 Revised:2021-12-06 Published:2022-02-15 Online:2022-03-15
  • Contact: ZHAO Jinchao

摘要:

为开发适宜人体温度的相变调温纺织品,采用同轴静电纺丝的方法将聚乙二醇(PEG)作为芯层封装在氮化硼(BN)增强的聚丙烯腈(PAN)壳层中,制备出氮化硼/聚丙烯腈/聚乙二醇(BN/PAN/PEG)复合相变纤维。研究了相变材料配比及BN浓度对纺丝膜形貌、热性能的影响,并对纤维膜进行热成像分析、热重分析表。结果表明:PEG1500与PEG1000-2在量比为6∶1时,复合相变材料的相变温度为36.4 ℃,满足人体温度舒适度要求;BN的质量分数为9%时,复合相变材料的热导响应性和储热效果最好。

关键词: 同轴静电纺丝, 微纳米纤维膜, 核壳结构, 相变材料, 氮化硼, 相变调温纺织品, 聚丙烯腈

Abstract:

In order to further develop phase change thermoregulated textiles that fit the human body temperature, the boron nitride/polyethylene glycol (BN/PAN/PEG) composite phase change fibers were prepared by encapsulating polyethylene glycol (PEG) as the core layer in a boron nitride (BN) reinforced polyacrylonitrile (PAN) shell layer through coaxial electrostatic spinning. The effects of phase change material ratios and BN concentration on the morphology and thermal properties of the spun films were investigated. The spun membranes were characterized by thermal imaging analysis and thermogravimetric analysis. The results show that the phase change temperature of the composite phase change material is 36.4 ℃ to meet the requirement of human temperature comfort when the molar fraction ratio of PEG1500 to PEG1000-2 is 6 to 1. The best thermal conductivity responsiveness and thermal storage of the spun membranes were obtained when the BN concentration was 9%.

Key words: coaxial electrostatic spinning, micro-nanofiber membrane, nuclear-shell structure, phase-change material, boron nitride, phase change temperatue-regulating textile, polyacrylonitrile

中图分类号: 

  • TS102

图1

不同分子质量PEG的DSC和 PEG1000-2与PEG1500复配的理论相变温度曲线"

图2

复配PEG的DSC曲线"

图3

BN/PAN/PEG纤维膜的扫描电镜照片"

图4

BN/PAN/PEG纤维膜直径分布"

图5

BN/PAN/PEG纤维膜的DSC曲线"

表1

BN/PAN/PEG纤维膜的热性能"

试样 Tm/℃ ΔHm/
(J·g-1)
Tc/℃ ΔHc/
(J·g-1)
Tmo Tmp Tca Tcb
PAN/PEG 33.3 43.8 92.7 22.1 28.8 -87.9
1%BN/PAN/PEG 33.2 42.5 88.2 22.8 28.4 -85.4
3%BN/PAN/PEG 33.1 42.5 81.5 22.8 29.1 -75.8
5%BN/PAN/PEG 33.0 40.7 22.8 23.7 27.1 -21.4
7%BN/PAN/PEG 33.0 41.7 39.7 25.8 30.0 -37.1
9%BN/PAN/PEG 33.0 41.7 52.3 25.1 29.2 -48.4

图6

BN/PAN/PEG纤维膜热成像图"

图7

BN/PAN/PEG相变纤维膜表面温度随加热时间变化"

[1] CHEN Tao, FNAG Qishen, ZHONG Qing, et al. Synjournal and thermosensitive behavior of polyacrylamide copolymers and their applications in smart textiles[J]. Polymers, 2015 (7):909-920.
[2] YING Cui, WANG Huxin, LI Yujie, et al. A thermally insulating textile inspired by polar bear hair[J]. Advanced Materials, 2018 (30): 1706807.
[3] ATTIA Nouef. Facile route for development of smart slimming textile fabrics based on nanocomposites[J]. Fiber Polymer, 2018 (19):471-475.
[4] 弋梦梦, 廖喜林, 耿长军, 等. 智能温控纺织品研究进展及应用[J]. 天津纺织科技, 2018(3): 77-79.
YI Mengmeng, LIAO Xilin, GENG Changjun, et al. Research progress and application of intelligent temperature control textiles[J]. Tianjin Textile Technology, 2018(3): 77-79.
[5] MORRIS. Coupling of interface kinetics and transformation-induced strain during pres sure-induced solid-solid phase changes[J]. Journal of the Mechanics and Physics of Solids, 2002, 50(7): 1363-1395.
doi: 10.1016/S0022-5096(01)00122-3
[6] LU Yuan, XIAO Xiudi, HU Juan, et al. Novel smart textile with phase change materials encapsulated core-sheath structure fabricated by coaxial electrospin-ning[J]. Chemical Engineering Journal, 2018(555): 501-506.
[7] LU Yuan, XIAO Xiudi, HU Juan, et al. Core-sheath paraffin-wax-loaded nanofibers by electrospinning for heat storage[J]. ACS Applied Materials & Interfaces, 2018, 10(15): 12759-12767.
[8] LIU Chenzhen, RAO Zhonghao, ZHAO Jiateng, et al. Review on nano encapsulated phase change materials: preparation, characterization and heat transfer enhancement[J]. Nano Energy, 2015, 13:814-826.
doi: 10.1016/j.nanoen.2015.02.016
[9] KATTI D S, ROBINSON K W, KO F K. Bioresorbable nanofiber-based systems for wound healing and drug delivery: optimization of fabrication parameters[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2004, 70(2): 35-39.
[10] 蔡以兵, 孙桂岩, 刘盟盟, 等. 定形相变复合材料的研究进展:静电纺丝法[J]. 高分子通报, 2015(2): 18-25.
CAI Yibing, SUN Guiyan, LIU Mengmeng, et al. The research progress of form-stable phase composite materials: electrospinning[J]. Polymer Bulletin, 2015(2): 18-25.
[11] 刘树英. 国际相变智能调温纤维发展趋势:三[J]. 中国纤检, 2017(4): 132-135.
LIU Shuying. An international development trend of phase change intelligent temperature fibers[J]. China Fiber Inspection, 2017(4): 132-135.
[1] 贾琳, 王西贤, 李环宇, 张海霞, 覃小红. 聚丙烯腈/BaTiO3复合纳米纤维过滤膜的制备及其性能[J]. 纺织学报, 2021, 42(12): 34-41.
[2] 蒋璐璐, 邓梦, 王云仪, 李俊. 气凝胶材料在消防服中的应用研究进展[J]. 纺织学报, 2021, 42(09): 187-194.
[3] 权震震, 王亦涵, 祖遥, 覃小红. 多曲面喷头静电纺射流形成机制与成膜特性[J]. 纺织学报, 2021, 42(09): 39-45.
[4] 阳智, 刘呈坤, 吴红, 毛雪. 木质素/聚丙烯腈基碳纤维的制备及其表征[J]. 纺织学报, 2021, 42(07): 54-61.
[5] 王慧云, 王萍, 李媛媛, 张岩. 中空多孔异形聚丙烯腈纤维的制备及其性能[J]. 纺织学报, 2021, 42(03): 50-55.
[6] 郭雪松, 顾嘉怡, 胡建臣, 魏真真, 赵燕. 聚丙烯腈/羧基丁苯乳胶复合纳米纤维膜的制备及其性能[J]. 纺织学报, 2021, 42(02): 34-40.
[7] 陈云博, 朱翔宇, 李祥, 余弘, 李卫东, 徐红, 隋晓锋. 相变调温纺织品制备方法的研究进展[J]. 纺织学报, 2021, 42(01): 167-174.
[8] 孙倩, 阚燕, 李晓强, 高德康. 聚丙烯腈/氯化钴纳米纤维比色湿度传感器的制备及其性能[J]. 纺织学报, 2020, 41(11): 27-33.
[9] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[10] 刘国金, 石峰, 陈新祥, 张国庆, 周岚. 聚氨酯/相变蜡蓄热调温功能整理剂的制备及其在棉织物上的应用[J]. 纺织学报, 2020, 41(07): 129-134.
[11] 王树博, 秦湘普, 石磊, 庄旭品, 李振环. 氧化石墨烯量子点/聚丙烯腈纳米纤维复合质子交换膜的制备及其性能[J]. 纺织学报, 2020, 41(06): 8-13.
[12] 贾琳, 王西贤, 陶文娟, 张海霞, 覃小红. 聚丙烯腈抗菌复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2020, 41(06): 14-20.
[13] 张一敏, 周伟涛, 何建新, 杜姗, 陈香香, 崔世忠. 偕胺肟化SiO2/聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(05): 25-29.
[14] 刘艳春, 白刚. 小檗碱在聚丙烯腈/醋酸纤维素复合纤维染色中的应用[J]. 纺织学报, 2020, 41(05): 94-98.
[15] 隋智慧, 伞景龙, 王旭, 常江, 吴学栋, 祖彬. 纳米ZnO/有机氟硅改性聚丙烯酸酯乳液的合成及应用[J]. 纺织学报, 2020, 41(04): 84-90.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 林彬;李哲. 泡泡袖袖山褶皱凸起量的影响因素[J]. 纺织学报, 2009, 30(06): 104 -106 .
[2] 贾庆龙, 焦晓宁, 王忠忠. PVDF静电纺锂电隔膜纤维直径预测模型及优化[J]. 纺织学报, 2012, 33(3): 22 -26 .
[3] 陈仁忠 胡毅 袁菁红 沈桢 陈艳丽 吕慧 何霞. 静电纺MnO2/PAN纳米纤维膜的制备及其催化氧化甲醛性能[J]. 纺织学报, 2015, 36(05): 1 -6 .
[4] 陈悦, 赵永欢, 褚朱丹, 庄志山, 邱琳琳, 杜平凡. 基于碳纤维及其织物的柔性锂电池电极研究进展[J]. 纺织学报, 2019, 40(02): 173 -180 .
[5] 姬长春, 张开源, 王玉栋, 王新厚. 熔喷三维气流场的数值计算与分析[J]. 纺织学报, 2019, 40(08): 175 -180 .
[6] 孙光武, 李杰聪, 辛三法, 王新厚. 基于非牛顿流体本构方程的熔喷纤维直径预测[J]. 纺织学报, 2019, 40(11): 20 -25 .
[7] 甄琪, 张恒, 朱斐超, 史建宏, 刘雍, 张一风. 聚丙烯/聚酯双组分微纳米纤维熔喷非织造材料制备及其性能[J]. 纺织学报, 2020, 41(02): 26 -32 .
[8] 李辉芹, 张楠, 温晓丹, 巩继贤, 赵晓明, 王支帅. 纤维材料降噪结构体的研究进展[J]. 纺织学报, 2020, 41(03): 175 -181 .
[9] 张星, 刘金鑫, 张海峰, 王玉晓, 靳向煜. 防护口罩用非织造滤料的制备技术与研究现状[J]. 纺织学报, 2020, 41(03): 168 -174 .
[10] 丁放, 任学宏. 磷氮阻燃剂对涤纶织物的阻燃整理[J]. 纺织学报, 2020, 41(03): 100 -105 .