纺织学报 ›› 2022, Vol. 43 ›› Issue (12): 16-21.doi: 10.13475/j.fzxb.20211106106

• 纤维材料 • 上一篇    下一篇

三维多孔生物可降解聚合物人工食管支架的结构与力学性能

王曙东1,2,3()   

  1. 1.盐城工业职业技术学院 纺织服装学院, 江苏 盐城 224005
    2.苏州大学 纺织与服装工程学院, 江苏 苏州 215002
    3.江苏金麦穗新能源科技股份有限公司, 江苏 盐城 224000
  • 收稿日期:2021-11-11 修回日期:2022-02-27 出版日期:2022-12-15 发布日期:2023-01-06
  • 作者简介:王曙东(1983—),男,副教授,博士。主要研究方向为生物医用纤维材料。E-mail:sdwang1983@163.com
  • 基金资助:
    江苏省自然科学基金面上项目(BK20201216);江苏高校青蓝工程项目(苏教师〔2018〕12号);江苏高校青蓝工程项目(苏教师〔2019〕3号)

Structure and mechanical properties of three-dimensional porous biodegradable polymer artificial esophageal scaffold

WANG Shudong1,2,3()   

  1. 1. School of Textile and Clothing, Yancheng Polytechnic College, Yancheng, Jiangsu 224005, China
    2. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215002, China
    3. Jiangsu Jinmaisui New Energy Technology Co., Ltd., Yancheng, Jiangsu 224000, China
  • Received:2021-11-11 Revised:2022-02-27 Published:2022-12-15 Online:2023-01-06

摘要:

为满足人工食管支架对材料结构与力学性能的要求,以聚乳酸(PLA)和聚乳酸-羟基乙酸共聚物(PLGA)为原材料、圆柱形聚四氟乙烯为模板、氯化钠为致孔剂,制备了三维多孔生物可降解聚合物人工食管支架,并对食管支架的形貌、微观结构及其力学性能进行表征。结果表明:制备的PLA和PLGA人工食管支架具有三维多孔结构,经乙醇处理后,食管支架的长度、管径和孔隙率均有一定程度的降低。PLA和PLGA三维多孔食管支架的微观结构为无定型结构,乙醇处理在一定程度上提升了2种食管支架的结晶度。PLA和PLGA食管支架的断裂强度和缝合强力分别为(2.68±0.46) MPa、(3.68±0.98) N和(1.53±0.21) MPa、(2.21±0.65) N,乙醇处理后,2种食管支架的拉伸强度和缝合强力均有一定程度提升。2种食管支架的缝合强力均超过了食管支架移植时支架所能承受的缝合强力。

关键词: 人工食管支架, 聚乳酸, 聚乳酸-羟基乙酸共聚物, 生物可降解, 结构, 力学性能

Abstract:

In order to meet the requirements of artificial esophageal scaffolds on material's structure and mechanical properties, three-dimensional porous biodegradable polymer artificial esophageal scaffolds were prepared with biodegradable polylactic acid (PLA) and polylactic acid-glycolic acid copolymer (PLGA) as raw materials, cylindrical polytetrafluoroethylene as template and sodium chloride as porogen. Morphology, microstructure and mechanical properties were characterized. The results show that the PLA and PLGA artificial esophageal scaffolds have three-dimensional porous structure. After ethanol treatment, the length, diameter and porosity of the esophageal scaffolds decrease to a certain extent. Microstructure of PLA and PLGA three-dimensional porous esophageal scaffolds is amorphous. Ethanol treatment improves the crystallinity of the two esophageal scaffolds to a certain extent. The breaking strength and suture strength of the PLA and PLGA esophageal scaffolds are (2.68±0.46) MPa, (3.68±0.98) N and (1.53±0.21) MPa, (2.21±0.65) N, respectively. After ethanol treatment, the tensile strength and suture strength of these two esophageal scaffolds are improved to a certain extent. The suture strength of the two esophageal scaffolds exceeds the suture strength that the scaffolds could bear during esophageal scaffolds transplantation.

Key words: artificial esophageal scaffold, polylactic acid, polylactic acid-glycdic acid copolymer, biodegradability, structure, mechanical property

中图分类号: 

  • TS102.512

图1

三维多孔食管支架的形貌结构照片"

表1

三维多孔食管支架的结构尺寸"

样品编号 长度/cm 管径/mm 壁厚/mm 孔隙率/%
1# 10.0 9.9 2.2 69.3
2# 9.9 9.8 2.1 61.9
3# 9.9 10.1 1.8 65.6
4# 9.8 9.9 1.7 58.3

图2

三维多孔生物可降解聚合物人工食管支架的SEM照片"

图3

三维多孔食管支架的红外光谱"

图4

三维多孔食管支架的X射线衍射光谱"

图5

三维多孔食管支架的热性能"

表2

三维多孔食管支架的力学性能"

样品
编号
断裂强
度/MPa
断裂伸
长率/%
弹性模
量/MPa
缝合强
力/N
1# 2.68±0.46 38.56±3.35 6.95±0.35 3.68±0.98
2# 2.97±0.38 32.37±2.76 9.18±0.27 4.02±1.32
3# 1.53±0.21 46.79±4.21 3.27±0.23 2.21±0.65
4# 1.84±0.26 44.28±3.82 4.16±0.19 2.86±0.78
[1] BRAY F, FERLAY J, SOERJOMATARAM I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA: A Cancer Journal for Clinicians, 2018, 68:394-424.
doi: 10.3322/caac.21492 pmid: 30207593
[2] DENG J, CHEN H, ZHOU D, et al. Comparative genomic analysis of esophageal squamous cell carcinoma between Asian and Caucasian patient populations[J]. Nature Communications, 2017. DOI:10.1038/s41467-017-01730-x.
doi: 10.1038/s41467-017-01730-x
[3] ZHU Y, ZHOU M, HOU R. Tissue engineering of esophagus[M]. London: IntechOpen, 2017: 173-191.
[4] BERMAN E F. The experimental replacement of portions of the esophagus by a plastic tube[J]. Annals of Surgery, 1952, 135:337-343.
pmid: 14903864
[5] LEE S, HWANG G, KIM T H, et al. On-demand drug release from gold nanoturf fora thermo-and chemotherapeutic esophageal stent[J]. ACS Nano, 2018, 12:6756-6766.
doi: 10.1021/acsnano.8b01921
[6] 於学婵, 沈秋霞, 卢珍珍, 等. 电纺丝技术制备组织工程食管仿生支架[J]. 中国组织工程研究, 2014, 18:4771-4776.
YU Xuechan, SHEN Qiuxia, LU Zhenzhen, et al. Preparation of tissue-engineered esophageal scaffolds using electrospinning technology[J]. Chinese Journal of Tissue Engineering Research, 2014, 18:4771-4776.
[7] LI J, YE W, FAN Z, et al. A novel stereocomplex poly(lactic acid) with Shish-Kebab crystals and bionic surface structures as bioimplant materials for tissue engineering applications[J]. ACS Applied Materials & Interfaces, 2021, 13(4):5469-5477.
[8] MENG J, BOSHETTO F, YAGI S, et al. Design and manufacturing of 3D high-precision micro-fibrous-poly (L-lactic acid) scaffold using melt electrowriting technique for bone tissue engineering[J]. Materials & Design, 2021. DOI:10.1016/j.matdes.2021.110063.
doi: 10.1016/j.matdes.2021.110063
[9] WEI P, XU Y, ZHANG H, et al. Continued sustained insulin-releasing PLGA nanoparticles modified 3D-printed PCL composite scaffolds for osteochondral repair[J]. Chemical Engineering Journal, 2021. DOI:10.1016/j.cej.2021.130051.
doi: 10.1016/j.cej.2021.130051
[10] CHEN P, CUI L, CHEN G, et al. The application of BMP-12-overexpressing mesenchymal stem cells loaded 3D-printed PLGA scaffolds in rabbit rotator cuff repair[J]. International Journal of Biological Macromolecules, 2019, 138: 79-88.
doi: S0141-8130(19)31768-4 pmid: 31295489
[11] PUTRI N, WANG X, CHEN Y, et al. Preparation of PLGA-collagen hybrid scaffolds with controlled pore structures for cartilage tissue engineering[J]. Progress in Natural Science: Materials International, 2020, 30: 642-650.
doi: 10.1016/j.pnsc.2020.07.003
[12] LAI Y, LI Y, CAO H, et al. Osteogenic magnesium incorporated into PLGA/TCP porous scaffold by 3D printing for repairing challenging bone defect[J]. Biomaterials, 2019, 197: 207-219.
doi: S0142-9612(19)30019-5 pmid: 30660996
[13] 王曙东, 张幼珠, 王红卫, 等. 静电纺PLA/丝素-明胶复合管状支架的结构与性能[J]. 纺织学报, 2009, 30(6):6-9.
WANG Shudong, ZHANG Youzhu, WANG Hongwei, et al. Study on the electrospun polylactide/silk fibroin-gelatin tubular scaffold for tissue engineering blood vessel[J]. Journal of Textile Research, 2009, 30(6):6-9.
[14] HU X, SHEN H, YANG F, et al. Preparation and cell affinity of microtubular orientation-structured PLGA(70/30) blood vessel scaffold[J]. Biomaterials, 2008, 29: 3128-3136.
doi: 10.1016/j.biomaterials.2008.04.010 pmid: 18439673
[15] LIN M, FIRROZI N, TSAI C, et al. 3D-printed flexible polymer stents for potential applications in inoperable esophageal malignancies[J]. Acta Biomateriali, 2019, 83: 119-129.
doi: 10.1016/j.actbio.2018.10.035
[16] SCHANER P J, MARTIN N D, TULENKO T N, et al. Decellularized vein as a potential scaffolds for vascular tissue engineering[J]. Journal of Vascular Surgery, 2004, 40: 146-153.
doi: 10.1016/j.jvs.2004.03.033
[17] LIU H, WANG S D, QI N. Controllable structure, properties, and degradation of the electrospun PLGA/PLA-blended nanofibrous scaffolds[J]. Journal of Applied Polymers, 2012, 125: E468-E476.
[18] 张锋, 张玉惕, 左保齐. 乙醇后处理对静电纺聚乳酸非织造网的影响[J]. 合成纤维, 2008(6):16-19.
ZHANG Feng, ZHANG Yuti, ZUO Baoqi. Effect of ethanol post-treatment on the characteristic of electrospun PLA nanofiber web[J]. Synthetic Fiber in China, 2008(6): 16-19.
[19] 王曙东. 静电纺PLA/丝素-明胶复合管状支架的构建及其性能[D]. 苏州: 苏州大学, 2009: 31-32.
WANG Shudong. Fabrication and properties of the electrospun polylactide/silk fibroin-gelatin composite tubular scaffold[D]. Suzhou: Soochow University, 2009: 31-32.
[20] BILLIAR K, MURRAY J, LAUDE D J. Effects of carbodiimide crosslinking conditions on the physical properties of laminated intestinal submucosa[J]. Journal of Biomedical Materials Research Part A, 2001, 56:101-108.
[1] 高益平, 李义臣, 王晓辉, 刘国金, 周岚, 邵敏, 邵建中. 基于液态光子晶体固定化的柔性结构生色膜制备及其性能[J]. 纺织学报, 2022, 43(12): 1-7.
[2] 李晓燕, 张智慧, 姚继明. 基于印刷技术制备柔性微型电容器的研究进展[J]. 纺织学报, 2022, 43(12): 197-202.
[3] 楚艳艳, 李施辰, 陈超, 刘莹莹, 黄伟韩, 张越, 陈晓钢. 柔性抗冲击纺织材料及其结构的研究进展[J]. 纺织学报, 2022, 43(12): 203-212.
[4] 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41.
[5] 吕丽华, 李臻. 废弃玉米秸秆的结构特征及其吸声性能[J]. 纺织学报, 2022, 43(12): 42-47.
[6] 张帅, 房宽峻, 刘秀明, 乔曦冉. 活性染料结构对彩色聚合物纳米球性能的影响[J]. 纺织学报, 2022, 43(12): 96-101.
[7] 李亮, 裴斐斐, 刘淑萍, 田苏杰, 许梦媛, 刘让同, 海军. 聚乳酸纳米纤维基载药敷料的制备与表征[J]. 纺织学报, 2022, 43(11): 1-8.
[8] 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87.
[9] 吴焕岭, 谢周良, 汪阳, 孙万超, 康正芳, 徐国华. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 9-15.
[10] 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15.
[11] 张典典, 于梦楠, 李敏, 刘明明, 付少海. 基于聚合物微球接枝硅油的超滑棉织物制备及其防污性能[J]. 纺织学报, 2022, 43(10): 119-125.
[12] 陈弈菲, 刘驰, 杨萌. 基于响应曲面分析的连体泳装结构情绪测量[J]. 纺织学报, 2022, 43(10): 161-168.
[13] 孙戬, 姜博艺, 张守京, 胡胜. 异纤分拣机剔除喷管结构参数对其性能的影响[J]. 纺织学报, 2022, 43(10): 169-175.
[14] 王津, 胡开瑞, 张刘飞, 陈磊. 纤维材料在柔性可穿戴锌电池中的应用进展[J]. 纺织学报, 2022, 43(10): 192-199.
[15] 杨吉震, 刘强飞, 何瑞东, 吴韶华, 何宏伟, 宁新, 周蓉, 董湘琳, 齐贵山. 高效低阻空气过滤材料研究进展[J]. 纺织学报, 2022, 43(10): 209-215.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!