纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 139-145.doi: 10.13475/j.fzxb.20211108407

• 染整与化学品 • 上一篇    下一篇

炭化三维间隔棉织物的制备及其电加热性能

黄锦波, 邵灵达, 祝成炎()   

  1. 浙江理工大学 先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
  • 收稿日期:2021-11-18 修回日期:2022-08-09 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 祝成炎(1962—),男,教授。主要研究方向为功能性纺织品和纺织结构复合材料。E-mail:cyzhu@zstu.edu.cn
  • 作者简介:黄锦波(1989—),男,博士生。主要研究方向为装饰与产业用纺织品设计与开发。
  • 基金资助:
    国家自然科学基金青年科学基金项目(51803185);浙江省基础公益研究计划项目(LGF21E030005);中国博士后科学基金第68批面上资助项目(2020M681917)

Preparation of carbonized three-dimensional spacer cotton fabric and its electrical heating properties

HUANG Jinbo, SHAO Lingda, ZHU Chengyan()   

  1. Key Laboratory for Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2021-11-18 Revised:2022-08-09 Published:2023-04-15 Online:2023-05-12

摘要:

为开发一种结构稳定可应用于压阻传感和电加热的功能型纺织品,研制出一种机织三维间隔织物基体,通过在惰性气体高温环境制备炭化三维间隔棉织物,应用扫描电子显微镜、傅里叶红外光谱和拉曼光谱对制备炭化棉织物纤维结构进行表征,研究其电加热性能。结果表明:炭化三维间隔棉织物具有很好的导电性,可视为均匀的电阻介质,且电阻变化率随着织物炭化温度升高呈指数降低;在较低炭化温度情况下电阻变化率较大,随着炭化温度升高,电阻变化率逐步降低。通过对织物升温效果与加热性能分析可知,织物在低于62.4 ℃时,其理论加热效率与升温温度呈等比关系,可应用于温度精准可控的电加热织物。

关键词: 三维间隔织物, 柔性加热材料, 炭化工艺, 导电性能, 电加热织物

Abstract:

Objective In order to develop functional textiles used in piezoresistive sensing and electric heating, the effects of different carbonization processes on the conductivity and electric heating properties of cotton fabrics were studied.
Method Using cotton fiber as the raw material, a three-dimensional spacer fabric was prepared using a double-shed weaving machine. The fabric was then carbonized to achieve the conductive and heating properties. The fiber structure in the carbonized cotton fabric was characterized by scanning electron microscopy, Fourier infrared spectroscopy and Raman spectroscopy. The conductivity and electric heating performance of the fabric were characterized by multimeter and infrared thermal imager, and their internal relations were analyzed.
Results The fabric can be carbonized by high temperature inert gas (N2)(Fig. 3). In the carbonization process, with the increase of carbonization temperature, the fiber scale layer structure was obvious seen, and the fiber surface structure became more porous. When the carbonization temperature of the fabric was set to 900 ℃, obvious punctate broken holes appeared on the fiber surface, and carbon particles falling off were observed. By analyzing the conductivity of the fabric, it was found that the resistance of the carbonized fabric decreased with the increase of carbonization temperature. The resistance of the charred fabric gradually increases with increasing measurement distance, the fabric resistance is linearly related to the plane distance and can be seen as similar to a uniform resistance. At a lower carbonization temperature or a higher current, the heating performance of the carbonized fabric is better, but there will be a lot of heat radiation and air heat exchange during the heating process of the fabric. The actual temperature rise curve of the fabric does not agree with the theoretical calculation of electric power(Fig. 8). The carbonized fabric was found to be heated and cooled fastest at 750 ℃. When the heating temperature of the carbonized fabric was lower than 62.4 ℃, the heating temperature of the fabric demonstrated proportional increases to the value of the theoretical electric power(Fig. 11). In the case where the heating temperature was higher than this temperature, the theoretical power of the fabric was significantly lower than the temperature of the fabric.
Conclusion The three-dimensional space carbonized cotton fabric demonstrated good electrical conductivity and it can be regarded as a uniform resistance medium, and the resistance rate decreases exponentially with the increase of carbonization temperature. At lower carbonization temperature, the change rate of resistance is larger, and with the increase of carbonization temperature, the change rate of resistance gradually decreases. Through the analysis of the heating effect and the heating property of the fabric, it is found that the theoretical heating efficiency of the fabric is proportional to the heating temperature when the temperature is below 62.4 ℃, and it can be applied to the electrically heated fabric with precise and controllable temperature.

Key words: three-dimensional spacer fabric, flexible heating material, carbonization process, electrical conductivity, electrically heated fabric

中图分类号: 

  • TS105.1

图1

三维间隔织机结构图 1、2、3为经线;4为综框;5为钢筘;6为布轴。"

表1

三维间隔织物规格"

原料 线密
度/tex
地经
数量/
纵经
数量/
纬密/
(根·cm-1)
间隔高
度/mm
幅宽/
mm
面密度/
(g·m-2)
棉纱 36.4 5 472 2 736 26 5 1 500 790

图2

织物炭化前后的结构对比"

图3

炭化前后织物的纤维SEM图"

图4

原棉织物与不同温度炭化棉织物红外光谱"

图5

不同炭化温度试样拉曼光谱图"

表2

不同炭化温度样品拉曼光谱参数"

温度/
WG/
cm-1
WD/
cm-1
FWHMG/
cm-1
FWHMD/
cm-1
R
(ID/IG)
750 1 580 1 345 113.3 270.7 2.24
800 1 587 1 340 106.3 272.2 2.58
850 1 587 1 338 114.6 248.5 1.97
900 1 587 1 340 110.7 249.0 1.92

图6

炭化织物不同间距下电阻"

表3

织物电阻线性回归方程"

序号 炭化温度/℃ 回归方程 R2
1 750 Y=9.58+9.96X 0.999
2 800 Y=2.6+4X 0.996
3 850 Y=1.24+2.32X 0.995
4 900 Y=1+1.37X 0.998

图7

炭化织物升温测试示意图"

图8

750 ℃不同电流强度下升温曲线图"

图9

0.3 A恒定电流不同炭化温度三维间隔织物升温曲线图"

图10

不同炭化温度下织物的升温/降温速率曲线"

图11

不同炭化温度升温温度与理论功率对比图"

[1] 张明俊, 周罗庆. 三维机织间隔织物复合材料的设计和织造[J]. 纺织导报, 2006(7):68-69.
ZHANG Mingjun, ZHOU Luoqing. Design and manufacture of 3D woven spacer fabric composite[J]. China Textile Leader, 2006(7):68-69.
[2] VERPOEST I, WEVERS M, IVENS J, et al. 3D fabrics for compression and impact resistant composite sandwich structures[M]. Berlin: Springer-verlag. 1989:535-541.
[3] 高爱君, 李敏, 王绍凯, 等. 三维间隔连体织物复合材料力学性能[J]. 复合材料学报, 2008(2):87-93.
GAO Aijun, LI Min, WANG Shaokai, et al. Experimental study on the mechanical characteristics of 3-D spacer fabric composites[J]. Acta Materiae Compositae Sinica, 2008(2):87-93.
[4] DOGANAY D, COSKUN S, GENLIK S P, et al. Silver nanowire decorated heatable textiles[J]. Nanotechnology, 2016.DOI:10.1088/0957-4484/27/43143501.
doi: 10.1088/0957-4484/27/43143501
[5] 李育洲, 张雨凡, 周青青, 等. 二氧化锰/石墨烯/棉织物复合电极的制备及其电化学性能[J]. 纺织学报, 2020, 41(1):96-101.
LI Yuzhou, ZHANG Yufan, ZHOU Qingqing, et al. Preparation and electrochemical properties of MnO2/graphene/cotton fabric composite electrode[J]. Journal of Textile Research, 2020, 41(1):96-101.
[6] 许静娴, 刘莉, 李俊. 镀银纱线电热针织物的开发及性能评价[J]. 纺织学报, 2016, 37(12): 24-28.
XU Jingxian, LIU Li, LI Jun. Development and performance evaluation of electrically-heated textile based on silver-coated yarn[J]. Journal of Textile Research, 2016, 37(12): 24-28.
[7] HONG X, YU R, HOU M, et al. Smart fabric strain sensor comprising reduced graphene oxide with structure-based negative piezoresistivity[J]. Journal of Materials Science, 2021(56):16946-16962.
[8] XIAO Z, SHENG C, XIA Y, et al. Electrical heating behavior of flexible thermoplastic polyurethane/super-P nanoparticle composite films for advanced wearable heaters[J]. Journal of Industrial and Engineering Chemistry, 2019 (71): 293-300.
[9] 吴坚, 姚健, 朱顺星, 等. 聚吡咯的安全性研究[J]. 南通大学学报(医学版), 2003, 23(4):367-368.
WU Jian, YAO Jian, ZHU Shunxing, et al. Study on the safty of polypyrrole(PPy)[J]. Journal of Nantong Uinversity, 2003, 23(4):367-368.
[10] 王永吉. 基于碳化棉织物的柔性电极制备及其电化学性研究[D]. 哈尔滨: 哈尔滨工业大学, 2021:1-9.
WANG Yongji. Fabrication of flexible electrode based on carbonized cottion textile and its research in electrochemical performance[D]. Harbin: Harbin Institute of Technology, 2021:1-9.
[11] 虞茹芳, 洪兴华, 祝成炎, 等. 还原氧化石墨烯涂层织物的电加热性能[J]. 纺织学报, 2021, 42(10): 126-131.
YU Rufang, HONG Xinghua, ZHU Chengyan, et al. Electrical heating properties of fabrics coated by reduced graphene oxide[J]. Journal of Textile Research, 2021, 42(10): 126-131.
[12] JUNG D, KIM D, LEE K H, et al. Transparent film heaters using multi-walled carbon nanotube sheets[J]. Sensors and Actuators A: Physical, 2013, 199: 176-180.
doi: 10.1016/j.sna.2013.05.024
[13] 彭勇, 陈珍珍. TiO2 光催化技术与活性炭纤维在水体修复领域的联合应用[J]. 广东化工, 2019, 46(1):46-47.
PENG Yong, CHEN Zhenzhen. The joint application of activated carbon fiber and advanced oxidation technology in the field of remediation of water bodies[J]. Guangdong Chemical Industry, 2019, 46(1):46-47.
[14] BAE J, SONG M K, PARK Y J, et al. Fiber superca-pacitors made of nanowire fiber hybrid structures for wearable/flexible energy storage[J]. Angewandte Chemie International Edition, 2011, 123(7):1721-1725.
[15] LI Hongbao, LI Xiaodong. Towards textile energy storage from cotton T-shirt[J]. Advanced Materials, 2012, 24(24):3246-3252.
doi: 10.1002/adma.v24.24
[16] 黄锦波, 邵灵达, 祝成炎. 活性炭纤维的制备及其应用进展[J]. 棉纺织技术, 2020(10):11-14.
HUANG Jinbo, SHAO Lingda, ZHU Chengyan. Preparation and application progress of activated carbon fiber.[J]. Cotton Textile Technology, 2020(10):11-14.
[17] 黄锦波, 张红霞, 葛彩虹, 等. 活性炭织物制备及其保温性能[J]. 纺织学报, 2014, 35(4): 43-46,51.
HUANG Jinbo, ZHANG Hongxia, GE Caihong, et al. Preparation and thermal insulation properties of activated Carbon Fabric[J]. Journal of Textile Research, 2014, 35(4): 43-46,51.
[18] 黄锦波, 祝成炎, 张红霞, 等. 基于剑杆织机改造的三维间隔机织物工艺设计[J]. 纺织学报, 2021, 42(6): 166-170.
HUANG Jinbo, ZHU Chengyan, ZHANG Hongxia, et al. Design of three-dimensional spacer fabrics based on rapier looms[J]. Journal of Textile Research, 2021, 42(6): 166-170.
[19] CHINKAP Chung, 廖咏梅, 许建华. 精练棉织物表面FT-IR ATR红外光谱分析[J]. 轻工科技, 2008, 24(1): 122-123.
CHINKAP Chung, LIAO Yongmei, XU Jianhua. FT-IR analysis on the surface of refined cotton fabric[J]. Light Industry Science and Technology., 2008, 24(1):122-123.
[1] 周志芳, 周赳, 彭稀, 黄锦波. 三维间隔空芯可变提花织物的织造工艺设计[J]. 纺织学报, 2023, 44(03): 67-72.
[2] 李一飞, 郑敏, 常朱宁子, 李丽艳, 曹元鸣, 翟旺宜. 二维过渡金属碳化物(Ti3C2Tx)对棉针织物的功能整理及其性能分析[J]. 纺织学报, 2021, 42(06): 120-127.
[3] 于佳, 辛斌杰, 卓婷婷, 周曦. 高导电性铜/聚吡咯涂层羊毛织物的制备与表征[J]. 纺织学报, 2021, 42(01): 112-117.
[4] 张佳慧, 王建萍. 圆形纬编针织物电极导电性能及电阻理论模型构建[J]. 纺织学报, 2020, 41(03): 56-61.
[5] 陈莹, 周爽, 韦恬静, 方浩霞, 李宇菲. 聚吡咯复合织物的软模板法制备及其性能[J]. 纺织学报, 2019, 40(12): 93-97.
[6] 朱金铭, 钱建华, 孙丽颖, 李正平, 彭慧敏. 用高长径比银纳米线制备功能性复合涤纶织物及其性能[J]. 纺织学报, 2019, 40(11): 113-118.
[7] 姜珊, 万爱兰, 缪旭红, 蒋高明, 马丕波, 陈晴. 等离子体处理对聚吡咯/涤纶复合导电纱线性能的影响[J]. 纺织学报, 2019, 40(08): 95-100.
[8] 王文聪, 范静静, 丁超, 王鸿博. 多功能复合导电毛织物的制备及其性能[J]. 纺织学报, 2019, 40(08): 117-123.
[9] 肖渊, 尹博, 李岚馨, 刘欢欢. 微滴喷射化学沉积工艺条件对成形银导线的影响[J]. 纺织学报, 2019, 40(05): 78-83.
[10] 曹机良, 徐李聪, 孟春丽, 李晓春. 紫外光固化石墨烯涂层棉织物的导电性能[J]. 纺织学报, 2019, 40(02): 135-140.
[11] 王云燕 陈慰来 王金凤. 碳黑导电纤维的导电性能[J]. 纺织学报, 2017, 38(05): 19-24.
[12] 洪剑寒 韩潇 陈建广 彭蓓福 苏敏 惠林 梁广明. 聚对苯二甲酸丙二醇酯/聚苯胺复合导电纱的电学与力学性能[J]. 纺织学报, 2017, 38(02): 40-46.
[13] 许静娴 刘莉 李俊. 镀银纱线电热针织物的开发及性能评价[J]. 纺织学报, 2016, 37(12): 24-28.
[14] 李晓英 蒋高明 马丕波 聂小林. 三维横编间隔织物的编织工艺及其性能[J]. 纺织学报, 2016, 37(07): 66-70.
[15] 蔡倩文 王金凤 陈慰来. 纬编针织柔性传感器结构及其导电性能[J]. 纺织学报, 2016, 37(06): 48-53.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!