纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 1-7.doi: 10.13475/j.fzxb.20211111107

• 纤维材料 •    下一篇

聚丁二酸丁二醇酯/丝胶蛋白共混纤维的制备及其性能

夏榆1, 姚菊明1, 周杰2,3, 毛梦慧2,3, 张玉梅4, 姚勇波2,3()   

  1. 1.浙江理工大学 材料科学与工程学院, 浙江 杭州 310018
    2.嘉兴学院 纳米技术研究院,浙江 嘉兴 314001
    3.浙江省纱线材料成形与复合加工技术研究重点实验室, 浙江 嘉兴 314001
    4.东华大学 高性能纤维及制品教育部重点实验室, 上海 201620
  • 收稿日期:2021-12-01 修回日期:2022-06-14 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 姚勇波(1986—),男,副教授,博士。主要研究方向为天然高分子的溶解与再生。E-mail:yaoyb@zjxu.edu.cn
  • 作者简介:夏榆(1997—),女,硕士生。主要研究方向为可降解高分子纤维材料的成形机制研究。
  • 基金资助:
    浙江省纱线材料成形与复合加工技术研究重点实验室开放基金项目(MTC-2022-12)

Preparation and properties of poly(butylene succinate)/silk sericin blend fiber

XIA Yu1, YAO Juming1, ZHOU Jie2,3, MAO Menghui2,3, ZHANG Yumei4, YAO Yongbo2,3()   

  1. 1. College of Materials Science and Engineering, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Nanotechnology Research Institute, Jiaxing University, Jiaxing, Zhejiang 314001, China
    3. Key Laboratory of Yarn Materials Forming and Composite Processing Technology of Zhejiang Province, Jiaxing University, Jiaxing, Zhejiang 314001, China
    4. Key Laboratory of High Performance Fibers & Products, Ministry of Education,Donghua University, Shanghai 201620, China
  • Received:2021-12-01 Revised:2022-06-14 Published:2023-04-15 Online:2023-05-12

摘要:

为提高聚丁二酸丁二醇酯(PBS)纤维的服用舒适性,将PBS与天然高分子丝胶蛋白共混,经熔融纺丝制成PBS/丝胶蛋白共混纤维,研究了丝胶蛋白质量分数对纤维形态结构、化学结构、热性能、力学性能与降解性能的影响。结果表明:共混纤维具有丝胶蛋白为分散相,PBS为连续相的形态结构;丝胶蛋白的存在改善了PBS纤维断裂伸长率过高的问题,当其质量分数达到15%时,共混纤维的断裂伸长率为8.9%;共混纤维的饱和回潮率为3.90%,接近于合成纤维中的锦纶,说明共混纤维亲肤性能优良;此外,土埋降解实验6 周后共混纤维的质量损失率可达53.6%,具有快速降解的能力。

关键词: 聚丁二酸丁二醇酯, 丝胶蛋白, 共混纤维, 吸湿性, 生物可降解性

Abstract:

Objective Poly (butylene succinate) (PBS) is a synthetic biodegradable polymer and silk sericin is a natural biodegradable polymer. PBS fiber can be prepared by melt spinning process, which is applied in textile industry as raw material. Silk sericin can be used as moisturizer in skincare and textile industries. To improve the skin-friendliness of PBS fiber, PBS and silk sericin was mixed by melt blending, then the blend fiber was prepared by melt spinning process.
Method After vacuum drying at 80 ℃ for 4 h, the PBS and silk sericin were melt blended using an internal mixer at the rotation rate of 60 r/min for 25 min. The mixing temperature of the PBS/silk sericin blends was set to 140 ℃, and the weight ratio of PBS/silk sericin is shown in Tab. 1. After that, the PBS/silk sericin blend fibers were spun through a single-screw extruder at 160 ℃. Then, the fiber was cooled in a water bath at room temperature. The extrusion speed was 1.95 g/min, the drawing speed was 3.60 m/min, and the draw ratio was 4.
Results The scanning electron microscopy (SEM) of the cross-section of the PBS/silk sericin blend fiber is shown in Fig. 1. The rough cross-section of PBS/silk sericin blend fiber indicates poor compatibility between PBS and silk sericin. There were small voids on the cross-section of the blend fibers, the number of voids would increase with the rise of silk sericin mass fraction. The XRD pattern of PBS/silk sericin blend fiber is shown in Fig. 3 and the crystallinity of PBS is listed in Tab. 2. With the increase of silk sericin mass fraction, the crystallinity of the blend fiber decreases. It seems that the crystallization process of PBS was obstructed by the dispersion of silk sericin in the fiber. The mechanical property of PBS/silk sericin blend fiber is shown in Fig. 4. Tensile strength and elongation at break of the blend fiber decrease when the silk sericin mass fraction increases, and the elongation at break of PBS fiber is 212.1%. However, for the blend fiber when the mass fraction of silk sericin became 15%, the elongation at break of was only 8.9%, this value meets the requirement of textile requirement. Hence, the overlarge elongation at break of PBS fiber can be reduced with the existence of silk sericin. The saturated moisture regains of the PBS/silk sericin blend fibers is shown in Fig. 6. It can be found that the saturated moisture regain of the blend fiber is improved with the increase of silk sericin mass fraction. For the blend fiber when the silk sericin mass fraction is 15%, the saturated moisture regain is 3.90%. This value is similar to the saturated moisture regain of polyamide 6 fiber (saturated moisture regain is 3.95%) with good hydrophilic property. The improved saturated moisture regain of the blend fiber is not only related to the hydrophilic group of silk sericin, but also associated with the increase of amorphous region area in the blend fiber. The weight loss rate of PBS/silk sericin blend fibers after soil burial test is shown in Fig. 7. The weight loss rate of the blend fiber after 6 weeks during the soil burial test is up to 53.6%. When silk sericin is degraded by microorganisms firstly, the specific surface area increases, which is beneficial to the contact between PBS and microorganisms. Then, the degradation rate of PBS is also accelerated.
Conclusion In this research, the PBS/silk sericin blend fibers were prepared by melt spinning method. The effect of PBS/silk sericin weight ratio on the morphology, mechanical strength and biodegradability was studied. The main findings are as follows,the small voids can be found on the cross-section of the PBS/silk sericin blend fibers, which is related to the weak interface force between PBS and silk sericin. For the PBS/silk sericin blend fiber when the mass fraction of silk sericin is 15%, the elongation at break is 8.9%, the saturated moisture regain is 3.90%. By contrast, the elongation at break of PBS fiber is 212.1%, the saturated moisture regain is 2.26%. The existence of silk sericin not only reduces the overlarge elongation at break of PBS fiber, but also improves the hydrophilic property. For the PBS/silk sericin blend fiber when the mass fraction of silk sericin is 15%, the weight loss rate after 6 weeks during the soil burial test is up to 53.6%. The biodegradability of PBS/silk sericin blend fiber of PBS is better than that of PBS fiber. Hence, the PBS/silk sericin blend fiber degrades quickly after use.

Key words: poly(butylene succinate), silk sericin, blend fiber, hygroscopicity, biodegradability

中图分类号: 

  • TQ342.9

表1

PBS/丝胶蛋白纤维的制备配方"

样品编号 PBS质量分数/% 丝胶蛋白质量分数/%
1# 100 0
2# 95 5
3# 90 10
4# 85 15

图1

PBS/丝胶蛋白共混纤维的截面扫描电子显微镜照片"

图2

PBS/丝胶蛋白共混纤维红外光谱图"

图3

PBS/丝胶蛋白共混纤维的XRD谱图"

表2

PBS/丝胶蛋白共混纤维的晶面位置及结晶度"

样品
编号
2θ/(°) 结晶
度/%
(020) (110) (111)
1# 19.82 22.76 29.09 42.63
2# 19.84 22.88 29.18 39.48
3# 20.01 22.95 29.11 36.46
4# 19.77 22.83 29.16 29.17

图4

PBS/丝胶蛋白共混纤维力学性能"

图5

PBS/丝胶蛋白共混纤维的热重曲线"

表3

PBS/丝胶蛋白共混纤维的热重参数"

样品编号 T95% T50% Tmax
1# 353 396 404
2# 344 397 404
3# 312 397 405
4# 295 396 404

图6

PBS/丝胶蛋白共混纤维的饱和回潮率"

图7

土埋降解实验后PBS/丝胶蛋白共混纤维的质量损失率"

图8

土埋降解实验后PBS/丝胶蛋白共混纤维形态的数码照片"

[1] MINCHEVA R, DELANGRE A, RAQUEZ J M, et al. Biobased polyesters with composition-dependent thermomechanical properties: synthesis and characterization of poly(butylene succinate-co-butylene azelate)[J]. Biomacromolecules, 2013, 14(3): 890-899.
doi: 10.1021/bm301965h pmid: 23369072
[2] MOCHANE M J, MAGAGULA S I, SEFADI J S, et al. A review on green composites based on natural fiber-reinforced polybutylene succinate (PBS)[J]. Polymers, 2021. DOI: 10.3390/polym13081200.
doi: 10.3390/polym13081200
[3] DEROINÉ M, PILLINB I, MAGUER G L, et al. Development of new generation fishing gear: a resistant and biodegradable monofilament[J]. Polymer Testing, 2019, 74: 163-169.
doi: 10.1016/j.polymertesting.2018.11.039
[4] 陈美玉, 谷丰, 陈晗飞. 生物基PBS纤维结构及力学性能[J]. 纺织高校基础科学学报, 2019, 32(1): 1-6.
CHEN Meiyu, GU Feng, CHEN Hanfei. Structure and mechanical properties of bio-loased polybutylene succinate fiber[J]. Basic Sciences Journal of Textile Universities, 2019, 32(1): 1-6.
[5] PRAHSARN C, KLINSUKHON W, PADEE S, et al. Hollow segmented-pie PLA/PBS and PLA/PP bicomponent fibers: an investigation on fiber properties and splittability[J]. Journal of Materials Science, 2016, 51(24): 10910-10916.
doi: 10.1007/s10853-016-0302-0
[6] 阳知乾, 刘建忠, 吕进, 等. POM/PBS共混纤维的结构与性能研究[J]. 合成纤维工业, 2017, 40(6): 17-21, 27.
YANG Zhiqian, LIU Jianzhong, LÜ Jin, et al. Structure and properties of POM/PBS blend fiber[J]. China Synthetic Fiber Industry, 2017, 40(6): 17-21,27.
[7] MA W X, WU Y L, PU C. Sericin grafting onto cashmere fiber and its properties investigation[J]. Journal of Natural Fibers, 2020. DOI: 10.1080/15440478.2020.1807438.
doi: 10.1080/15440478.2020.1807438
[8] ARANGO M C, MONTOYA Y, PERESIN M S, et al. Silk sericin as a biomaterial for tissue engineering: a review[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2020. DOI:10.1080/00914037.2020.1785454.
doi: 10.1080/00914037.2020.1785454
[9] WAHEED H, MINHAS F T, HUSSAIN A. Cellulose acetate/sericin blend membranes for use in dialysis[J]. Polymer Bulletin, 2017, 75: 3935-3950.
doi: 10.1007/s00289-017-2238-1
[10] 刘涛, 梁列峰, 高素华. 以聚乙烯醇为载体引入丝胶共混成纤的研究[J]. 四川丝绸, 2007(2): 15-17.
LIU Tao, LIANG Liefeng, GAO Suhua. Study on the introduction of sericin blending fiber with polyvinyl alcohol as carrier[J]. Sichuan Silk, 2007(2): 15-17.
[11] NORIZAN M N, ABDAN K, TAWAKKAL I A, et al. A review on properties and application of bio-based poly(butylene succinate)[J]. Polymers, 2021. DOI: 10.3390/polym13091436.
doi: 10.3390/polym13091436
[12] ZHOU M, FAN M, ZHAO Y S, et al. Effect of stretching on the mechanical properties in melt-spun poly(butylene succinate)/microfibrillated cellulose (MFC) nanocomposites[J]. Carbohydrate Polymers, 2016. DOI: 10.1016/j.carbpol.2015.12.040.
doi: 10.1016/j.carbpol.2015.12.040
[13] KIM B K, KWON O H, PARK W H, et al. Thermal, mechanical, impact, and water absorption properties of novel silk fibroin fiber reinforced poly(butylene succinate) biocomposites[J]. Macromolecular Research, 2016, 24(8): 734-740.
doi: 10.1007/s13233-016-4102-9
[14] WANG Y H, CONG L, LAI J J, et al. Soy protein and halloysite nanotubes-assisted preparation of environmentally friendly intumescent flame retardant for poly(butylene succinate)[J]. Polymer Testing, 2020. DOI: 10.1016/j.polymertesting.2019.106174.
doi: 10.1016/j.polymertesting.2019.106174
[15] COLTELLI M B, ALIOTTA L, GIGANTE V, et al. Preparation and compatibilization of PBS/whey protein isolate based blends[J]. Molecules, 2020, 25(14): 1-15.
doi: 10.3390/molecules25010001
[16] NANNI A, MESSORI M. Thermo-mechanical properties and creep modelling of wine lees filled polyamide 11 (PA11) and polybutylene succinate (PBS) bio-composites[J]. Composites Science and Technology, 2020. DOI: 10.1016/j.compscitech.2019.107974.
doi: 10.1016/j.compscitech.2019.107974
[17] RENOUX J, DANI J, DOUCHAIN C, et al. Simultaneous plasticization and blending of isolate soy protein with poly[(butylene succinate)‐co‐adipate] by one‐step extrusion process[J]. Journal of Applied Polymer Science, 2018. DOI: 10.1002/app.46442.
doi: 10.1002/app.46442
[18] ZHU N, YE M, SHI D, et al. Reactive compatibilization of biodegradable poly(butylene succinate)/spirulina microalgae composites[J]. Macromolecular Research, 2017, 25(2): 165-171.
doi: 10.1007/s13233-017-5025-9
[19] 顾晶君, 李婷婷, 张瑜, 等. 生物可降解共聚物PBST和PBS的结构与结晶性能[J]. 合成纤维工业, 2007, 30(2): 17-19,22.
GU Jingjun, LI Tingting, ZHANG Yu, et al. Structure and crystallization of biodegradable copolymers of PBST and PBS[J]. China Synthetic Fiber Industry, 2007, 30(2): 17-19,22.
[20] 董志敬, 叶德太, 钟小先. 丝胶热性能的研究[J]. 丝绸, 1987(1): 4,6-11.
DONG Zhijing, YE Detai, ZHONG Xiaoxian. A study on heat behaviour of sercine[J]. Journal of Silk, 1987(1): 4,6-11.
[21] 王建明, 李永锋, 郝新敏, 等. 生物基锦纶56和锦纶66的结构与吸放湿性能评价[J]. 纺织学报, 2021, 42(8): 1-7.
WANG Jianming, LI Yongfeng, HAO Xinmin, et al. Study on structure and moisture absorption and liberation properties of bio-based polyamide 56 and polyamide 66[J]. Journal of Textile Research, 2021, 42(8): 1-7.
doi: 10.1177/004051757204200101
[22] 甘宇, 姬洪, 徐锦龙, 等. 聚酰胺/聚酯皮芯复合纤维的研究开发[J]. 合成纤维, 2020, 49(2): 7-12,18.
GAN Yu, JI Hong, XU Jinlong, et al. The research and development of polyamide/polyester sheath-core composite fiber[J]. Synthetic Fiber in China, 2020, 49(2): 7-12,18.
[1] 钱红飞, KOBIR MD. Foysal, 陈龙, 李林祥, 方帅军. 聚乳酸/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)共混纤维的结构及其织物染色性能[J]. 纺织学报, 2023, 44(03): 104-110.
[2] 何崎, 李军令, 靳高岭, 刘津, 柯福佑, 陈烨, 王华平. 高卷曲聚醚酯/聚酯并列复合纤维的制备及其性能[J]. 纺织学报, 2022, 43(09): 70-75.
[3] 陈鹏, 廖世豪, 沈兰萍, 王瑄, 王鹏. 聚乳酸/聚酮共混纤维分散染料染色性能[J]. 纺织学报, 2022, 43(05): 12-17.
[4] 张涛, 王富平, 陈国宝, 吴基玉, 庞亚妮, 陈忠敏. 壳聚糖基抑菌凝胶剂的制备及其性能[J]. 纺织学报, 2022, 43(03): 71-77.
[5] 王成龙, 李立新, 吴绍明, 柴丽琴, 周岚. 染色促进剂对聚丁二酸丁二醇酯纤维分散染料染色动力学和热力学的影响[J]. 纺织学报, 2022, 43(01): 147-152.
[6] 王建明, 李永锋, 郝新敏, 闫金龙, 乔荣荣, 王美慧. 生物基锦纶56和锦纶66的结构与吸放湿性能评价[J]. 纺织学报, 2021, 42(08): 1-7.
[7] 崔一帆, 侯巍, 周千熙, 闫俊, 路艳华, 何婷婷. 丝胶温敏凝胶对棉织物性能的影响[J]. 纺织学报, 2019, 40(12): 74-78.
[8] 万爱兰, 缪旭红, 马丕波, 陈晴, 陈方芳. 功能性纬编斜纹牛仔面料的设计及其性能[J]. 纺织学报, 2019, 40(04): 55-59.
[9] 闫红芹 徐文正 严庆帅 郭棋盛. 预处理方法对丝瓜络纤维性能的影响[J]. 纺织学报, 2018, 39(12): 72-77.
[10] 姚勇波 颜志勇 李喆 易洪雷 张玉梅 王华平. 牵伸倍率分配对纤维素/丝素蛋白共混纤维形态结构的影响[J]. 纺织学报, 2018, 39(06): 13-18.
[11] 王旭 冯向伟 李亚娟. 织物吸湿性对织物和皮肤间动摩擦力的影响[J]. 纺织学报, 2017, 38(12): 54-59.
[12] 强涛涛 王杨阳 王乐智 郑永贵 张丰杰 郑书杰. 交联剂改性超细纤维合成革基布的性能[J]. 纺织学报, 2017, 38(09): 101-108.
[13] 马娟 金剑 金欣 肖长发. 亲水抗静电共混聚酯母粒的制备及其性能[J]. 纺织学报, 2017, 38(07): 6-10.
[14] 李旭明 孙西超 师利芬. 增强增韧聚乳酸纤维的制备及其性能[J]. 纺织学报, 2017, 38(04): 12-16.
[15] 王晓梅 陈才深. 聚乳酸/聚丙烯共混纺粘纤维的制备及其性能[J]. 纺织学报, 2017, 38(01): 13-16.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!