纺织学报 ›› 2022, Vol. 43 ›› Issue (11): 35-40.doi: 10.13475/j.fzxb.20211111206

• 纤维材料 • 上一篇    下一篇

碳纳米管/Ni/聚苯胺纤维状超级电容器的制备及其电化学性能

娄辉清1,2,3(), 朱斐超4, 李磊磊2, 丁会龙2, 普丹丹2, 王相飞2   

  1. 1.浙江省服装工程技术研究中心, 浙江 杭州 310018
    2.河南工程学院 纺织工程学院, 河南 郑州 450007
    3.神马实业股份有限公司, 河南 平顶山 467021
    4.浙江理工大学 纺织科学与工程学院 (国际丝绸学院), 浙江 杭州 310018
  • 收稿日期:2021-11-30 修回日期:2022-08-10 出版日期:2022-11-15 发布日期:2022-12-26
  • 作者简介:娄辉清(1985—),女,讲师,博士。主要研究方向为产业用和功能服装用纤维及纺织品。E-mail:huiqinglou@126.com
  • 基金资助:
    河南省科技攻关计划项目(212102310014);河南工程学院博士基金项目(Dkj2018023);浙江省服装工程技术研究中心开放基金项目(2021FZKF08);国家级大学生创新创业训练计划项目(202111517010)

Preparation and electrochemical performance of composite carbon nanotube/Ni/polyaniline fibrous supercapacitor

LOU Huiqing1,2,3(), ZHU Feichao4, LI Leilei2, DING Huilong2, PU Dandan2, WANG Xiangfei2   

  1. 1. Clothing Engineering Research Center of Zhejiang Province, Hangzhou, Zhejiang 310018, China
    2. School of Textiles Engineering, Henan University of Engineering, Zhengzhou, Henan 450007, China
    3. Shenma Industrial Co., Ltd., Pingdingshan, Henan 467021, China
    4. College of Textile Science and Engineering (International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2021-11-30 Revised:2022-08-10 Published:2022-11-15 Online:2022-12-26

摘要:

为提高纤维状超级电容器的电容性能,将碳纳米管(CNT)纤维进行阳极氧化预处理、金属化处理和电沉积聚苯胺后得到不同的电极材料,分别将CNT、CNT/聚苯胺(CNT-PANI)、CNT/阳极氧化/聚苯胺(CNT-O-PANI)、CNT/阳极氧化/金属化/聚苯胺(CNT-O-Ni-PANI)这4种电极材料组装纤维状超级电容器,并对其结构和电化学性能进行研究。结果表明:经过阳极氧化和金属化处理后,聚苯胺均匀、紧密地分散在碳纳米管纤维表面,并且无团聚、结块等现象;CNT-O-Ni-PANI电极材料制备的超级电容器具有优异的储能性能,其比电容和能量密度远高于其他3种电极材料;在1 A/g的电流密度下,其比电容和能量密度分别为357.8 F/g和178.9 W·h/kg;在10 mV/s的扫速下,其比电容高达1 246.3 F/g;采用CNT-O-Ni-PANI所制备的超级电容器稳定性能较好,在5 A/g的电流密度下,经过10 000次恒流充放电循环后,其电容保持率仍高达99.7%。

关键词: 纤维状超级电容器, 碳纳米管纤维, 阳极氧化, 聚苯胺, 比电容

Abstract:

In order to improve the capacitance performance of fibrous supercapacitors, carbon nanotube (CNT) fibers were subjected to anodizing pretreatment, metallization treatment and electrodeposition of polyaniline to obtain different electrode materials. CNT, CNT/polyaniline (CNT-PANI), CNT/anodization/polyaniline (CNT-O-PANI), CNT/anodization/metallization/polyaniline (CNT-O-Ni-PANI) was used to assemble the fibrous supercapacitor separately, and its structure and electrochemical performance were studied. The results show that after anodic oxidation and metallization, polyaniline was uniformly and tightly dispersed on the surface of the CNT fibers, and there was no agglomeration phenominon. The supercapacitor prepared by CNT-O-Ni-PANI electrode material has excellent energy storage performance, and its specific capacitance and energy density are much higher than the other three electrode materials. At a current density of 1 A/g, its specific capacitance and energy density are 357.8 F/g and 178.9 W·h/kg respectively, and at a scanning speed of 10 mV/s, its specific capacitance is as high as 1 246.3 F/g. The CNT-O-Ni-ANI supercapacitors have better stability performance, and at a current density of 5 A/g, the capacitance retention rate is still as high as 99.7% after 10 000 constant current charge and discharge cycles.

Key words: fibrous supercapacitor, carbon nanotube fiber, anodization, polyaniline, specific capacitance

中图分类号: 

  • TS102.6

图1

电极材料的形貌"

图2

恒流充放电曲线"

表1

超级电容器的储电性能"

电容器
类型
比容量/
(F·g-1)
能量密度/
(W·h·kg-1)
功率密度/
(kW·kg-1)
CNT 22.1 11.1 1.47
CNT-PANI 73.7 36.9 1.66
CNT-O-PANI 173.0 86.5 1.75
CNT-O-Ni-PANI 357.8 178.9 1.80

图3

循环伏安曲线"

图4

CNT-O-Ni-PANI在不同扫速下的CV曲线"

图5

交流阻抗测试"

图6

长效循环性能"

图7

纤维状超级电容器的柔韧性能"

[1] LIU W, SONG M S, KONG B, et al. Flexible and stretchable energy storage: recent advances and future perspectives[J]. Advanced Materials, 2017, 29(1): 1-34.
[2] GAO L, ZHU C, LI L, et al. All paper-based flexible and wearable piezoresistive pressure sensor[J]. ACS Applied Materials & Interfaces, 2019, 11(28): 25034-25042.
[3] HE J, LU C, JIANG H, et al. Scalable production of high-performing woven lithium-ion fibre batteries[J]. Nature, 2021, 597: 57-63.
doi: 10.1038/s41586-021-03772-0
[4] LI L, HAO M, YANG X, et al. Sustainable and flexible hydrovoltaic power generator for wearable sensing electronics-ScienceDirect[J]. Nano Energy, 2020, 72:1-6.
[5] PAN Z, YANG J, ZHANG Q, et al. All-solid-state fiber supercapacitors with ultrahigh volumetric energy density and outstanding flexibility[J]. Advanced Energy Materials, 2019, 9(9):1-7.
[6] LEE Y G, LEE J, AN G H. Surface engineering of carbon via coupled porosity tuning and heteroatom-doping for high-performance flexible fibrous superca-pacitors[J]. Advanced Functional Materials, 2021, 31(48): 2104256.
doi: 10.1002/adfm.202104256
[7] RANDENIYA L K, BENDAVID A, MARTIN P J, et al. Composite yarns of multiwalled carbon nanotubes with metallic electrical conductivity[J]. Small, 2010, 6(16): 1806-1811.
doi: 10.1002/smll.201000493 pmid: 20665629
[8] XU G, ZHAO J, LI S, et al. Continuous electrodeposition for lightweight, highly conducting and strong carbon nanotube-copper composite fibers[J]. Nanoscale, 2011, 3(10): 4215-4219.
doi: 10.1039/c1nr10571j pmid: 21879118
[9] CAI Z, LI L, REN J, et al. Flexible, weavable and efficient microsupercapacitor wires based on polyaniline composite fibers incorporated with aligned carbon nanotubes[J]. Journal of Materials Chemistry A, 2013, 1(2): 258-261.
doi: 10.1039/C2TA00274D
[10] DONG L, LIANG G, XU C, et al. Multi hierarchical construction-induced superior capacitive performances of flexible electrodes for wearable energy storage[J]. Nano Energy, 2017, 34: 242-248.
doi: 10.1016/j.nanoen.2017.02.031
[11] ZHANG Z, WANG L, LI Y, et al. Nitrogen-doped core-sheath carbon nanotube array for highly stretchable supercapacitor[J]. Advanced Energy Materials, 2016, 7(5): 1601814.
doi: 10.1002/aenm.201601814
[12] LIU K, CHEN Z, LV T, et al. A Self-supported graphene/carbon nanotube hollow fiber for integrated energy conversion and storage[J]. Nano-Micro Letters, 2020, 12:64.
doi: 10.1007/s40820-020-0390-x pmid: 34138272
[1] 王晨露, 马金星, 杨雅晴, 韩潇, 洪剑寒, 占海华, 杨施倩, 姚绍芳, 刘姜乔娜. 聚苯胺涂层经编织物的应变传感性能及其在呼吸监测中的应用[J]. 纺织学报, 2022, 43(08): 113-118.
[2] 聂文琪, 孙江东, 许帅, 郑贤宏, 徐珍珍. 柔性纺织纤维基超级电容器研究进展[J]. 纺织学报, 2022, 43(07): 200-206.
[3] 郭子娇, 李悦, 张瑞, 陆赞. 聚苯胺/Ti3C2Tx/碳纳米管复合纤维电极的制备及其性能[J]. 纺织学报, 2022, 43(02): 74-80.
[4] 刘锁, 武丁胜, 李曼, 赵玲玲, 凤权. 水刺粘胶/聚苯胺复合纤维膜的制备及其吸附性能[J]. 纺织学报, 2021, 42(08): 122-127.
[5] 叶成伟, 汪屹, 徐岚. 钴基分级多孔复合碳材料的制备及其电化学性能[J]. 纺织学报, 2021, 42(08): 57-63.
[6] 周歆如, 周筱雅, 马咏健, 胡铖烨, 赵晓曼, 洪剑寒, 韩潇. 导电聚苯胺/聚氨酯泡沫的制备及其压力传感性能[J]. 纺织学报, 2021, 42(04): 62-68.
[7] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[8] 吴颖欣, 胡铖烨, 周筱雅, 韩潇, 洪剑寒, GIL Ignacio. 柔性可穿戴氨纶/聚苯胺/聚氨酯复合材料的应变传感性能[J]. 纺织学报, 2020, 41(04): 21-25.
[9] 邹梨花, 徐珍珍, 孙妍妍, 王太冉, 邱夷平. 氧化石墨烯/聚苯胺功能膜对棉织物电磁屏蔽性能的影响[J]. 纺织学报, 2019, 40(08): 109-116.
[10] 缪润伍, 金丽华, 魏祺煜, 韩潇, 洪剑寒. 多轴向导电芳纶增强复合材料及其电磁屏蔽性能[J]. 纺织学报, 2019, 40(02): 100-104.
[11] 俞俭 逄增媛 魏取福. 聚苯胺/壳聚糖/羊毛复合织物导电性能及苯胺吸附分子模拟[J]. 纺织学报, 2018, 39(12): 95-100.
[12] 李清文 赵静娜 张骁骅. 碳纳米管纤维的物理性能与宏量制备及其应用[J]. 纺织学报, 2018, 39(12): 145-151.
[13] 韩潇 洪剑寒 惠林 史韩萍 金丽华. 导电涤纶纱连续制备工艺与性能[J]. 纺织学报, 2018, 39(02): 20-25.
[14] 洪剑寒 韩潇 陈建广 彭蓓福 苏敏 惠林 梁广明. 聚对苯二甲酸丙二醇酯/聚苯胺复合导电纱的电学与力学性能[J]. 纺织学报, 2017, 38(02): 40-46.
[15] 李兰倩 卢明 刘一萍 谭炼 赵振云 刘祖兰 . 聚苯胺/蚕丝复合织物的制备及其pH值响应性[J]. 纺织学报, 2016, 37(4): 91-95.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 赵良臣;闻涛. 旋转组织设计的数学原理[J]. 纺织学报, 2003, 24(06): 33 -34 .
[2] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[3] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[4] 【分类号】:Z【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  一;纺 纱模糊控制纺纱张力的研究周光茜等 ( - )………………原棉含杂与除杂效果评价方法的研究于永玲 ( - )……网络长丝纱免浆免捻功能的结构表征方法李栋高等 ( - )……………. 2003年纺织学报第二十四卷总目次[J]. 纺织学报, 2003, 24(06): 109 -620 .
[5] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[6] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[7] 邓炳耀;晏雄. 热压对芳纶非织造布机械性能的影响[J]. 纺织学报, 2004, 25(02): 103 -104 .
[8] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[9] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[10] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .