纺织学报 ›› 2022, Vol. 43 ›› Issue (03): 8-16.doi: 10.13475/j.fzxb.20211200109
吴洋1,2, 刘方恬1,2, 曹孟杰3, 崔金海3, 邓红兵1,2()
WU Yang1,2, LIU Fangtian1,2, CAO Mengjie3, CUI Jinhai3, DENG Hongbing1,2()
摘要:
针对当前传统医用敷料在患者伤口护理中出现的易感染、造成二次伤害等问题,结合生物质原料的生物可降解性、生物相容性、无毒性等特点,以及部分生物质纤维良好的吸湿性、抑菌性和一定的生物活性等性质,介绍了生物质纤维作为医用敷料的优势。概述了用于医用敷料的不同生物质纤维的制备方式,提出不同伤口定制化处理时适用的生物质纤维。归纳了近年来各类生物质纤维医用敷料的研究进展,包括其在抗菌消炎、药物递送、渗液管理、组织替代医用敷料中的功能化应用,并探讨了生物质纤维医用敷料存在的问题和未来的发展方向。
中图分类号:
[1] |
GASPAR-PINTILIESCU A, STANCIUC A M, CRACIUNESCU O. Natural composite dressings based on collagen, gelatin and plant bioactive compounds for wound healing: a review[J]. International Journal of Biological Macromolecules, 2019,138:854-865.
doi: 10.1016/j.ijbiomac.2019.07.155 |
[2] |
NUSSBAUM S R, CARTER M J, FIFE C E, et al. An economic evaluation of the impact, cost, and medicare policy implications of chronic nonhealing wounds[J]. Value in Health, 2018,21(1):27-32.
doi: 10.1016/j.jval.2017.07.007 |
[3] |
PILEHVAR-SOLTANAHMADI Y, AKBARZADEH A, MOAZZEZ-LALAKLO N, et al. An update on clinical applications of electrospun nanofibers for skin bioengineering[J]. Artificial Cells Nanomedicine and Biotechnology, 2016,44(6):1350-1364.
doi: 10.3109/21691401.2015.1036999 |
[4] |
WU X B, LIU R, LAO T T. Therapeutic compression materials and wound dressings for chronic venous insufficiency: a comprehensive review[J]. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2020,108(3):892-909.
doi: 10.1002/jbm.b.v108.3 |
[5] |
DONG R N, GUO B L. Smart wound dressings for wound healing[J]. Nano Today, 2021,41. DOI: 10.1016/j.nantod.2021.101290.
doi: 10.1016/j.nantod.2021.101290 |
[6] |
BHARDWAJ N, KUNDU S C. Electrospinning: a fascinating fiber fabrication technique[J]. Biotechnology Advances, 2010,28(3):325-347.
doi: 10.1016/j.biotechadv.2010.01.004 |
[7] |
AMBEKAR R S, KANDASUBRAMANIAN B. Advancements in nanofibers for wound dressing: a review[J]. European Polymer Journal, 2019,117:304-336.
doi: 10.1016/j.eurpolymj.2019.05.020 |
[8] |
RIEGER K A, BIRCH N P, SCHIFFMAN J D. Designing electrospun nanofiber mats to promote wound healing: a review[J]. Journal of Materials Chemistry B, 2013,1(36):4531-4541.
doi: 10.1039/c3tb20795a |
[9] |
HOMAEIGOHAR S, BOCCACCINI A R. Antibacterial biohybrid nanofibers for wound dressings[J]. Acta Biomaterialia, 2020,107:25-49.
doi: 10.1016/j.actbio.2020.02.022 |
[10] |
CHATTOPADHYAY S, RAINES R T. Collagen-based biomaterials for wound healing[J]. Biopolymers, 2014,101(8):821-833.
doi: 10.1002/bip.v101.8 |
[11] |
JAYAKUMAR R, PRABAHARAN M, KUMAR P T S, et al. Biomaterials based on chitin and chitosan in wound dressing applications[J]. Biotechnology Advances, 2011,29(3):322-337.
doi: 10.1016/j.biotechadv.2011.01.005 |
[12] |
PATIL P P, REAGAN M R, BOHARA R A. Silk fibroin and silk-based biomaterial derivatives for ideal wound dressings[J]. International Journal of Biological Macromolecules, 2020,164:4613-4627.
doi: 10.1016/j.ijbiomac.2020.08.041 |
[13] |
ZHANG M, ZHAO X. Alginate hydrogel dressings for advanced wound management[J]. International Journal of Biological Macromolecules, 2020,162:1414-1428.
doi: 10.1016/j.ijbiomac.2020.07.311 |
[14] |
NASERI-NOSAR M, ZIORA Z M. Wound dressings from naturally-occurring polymers: a review on homopolysaccharide-based composites[J]. Carbohydrate Polymers, 2018,189:379-398.
doi: 10.1016/j.carbpol.2018.02.003 |
[15] |
JANMOHAMMADI M, NOURBAKHSH M S. Electrospun polycaprolactone scaffolds for tissue engineering: a review[J]. International Journal of Polymeric Materials and Polymeric Biomaterials, 2019,68(9):527-539.
doi: 10.1080/00914037.2018.1466139 |
[16] |
AUGUSTINE R, REHMAN S R U, AHMED R, et al. Electrospun chitosan membranes containing bioactive and therapeutic agents for enhanced wound healing[J]. International Journal of Biological Macromolecules, 2020,156:153-170.
doi: 10.1016/j.ijbiomac.2020.03.207 |
[17] | 芦长椿. 高端创伤敷料技术与市场的最新进展[J]. 纺织导报, 2014(1):83-87. |
LU Changchun. Latest development of advanced wound dressing: market and technology[J]. China Textile Leader, 2014(1):83-87. | |
[18] |
RINAUDO M. Chitin and chitosan: properties and applications[J]. Progress in Polymer Science, 2006,31(7):603-632.
doi: 10.1016/j.progpolymsci.2006.06.001 |
[19] |
QU L J, GUO X Q, TIAN M W, et al. Antimicrobial fibers based on chitosan and polyvinyl-alcohol[J]. Fibers and Polymers, 2014,15(7):1357-1363.
doi: 10.1007/s12221-014-1357-7 |
[20] |
SHAMSHINA J L, GURAU G, BLOCK L E, et al. Chitin-calcium alginate composite fibers for wound care dressings spun from ionic liquid solution[J]. Journal of Materials Chemistry B, 2014,2(25):3924-3936.
doi: 10.1039/C4TB00329B |
[21] | SHEN X Y, JI Y L, TAN Z Q, et al. Preparing technology and application of biomedical fibers based on chitin and its derivatives[J]. Materials Review, 2008,22(6):1-5. |
[22] |
HUANG Y, ZHONG Z B, DUAN B, et al. Novel fibers fabricated directly from chitin solution and their application as wound dressing[J]. Journal of Materials Chemistry B, 2014,2(22):3427-3432.
doi: 10.1039/c4tb00098f |
[23] |
KHOR E, LIM L Y. Implantable applications of chitin and chitosan[J]. Biomaterials, 2003,24(13):2339-2349.
doi: 10.1016/S0142-9612(03)00026-7 |
[24] |
TCHEMTCHOUA V T, ATANASOVA G, AQIL A, et al. Development of a chitosan nanofibrillar scaffold for skin repair and regeneration[J]. Biomacromolecules, 2011,12(9):3194-3204.
doi: 10.1021/bm200680q |
[25] |
DING F Y, DENG H B, DU Y M, et al. Emerging chitin and chitosan nanofibrous materials for biomedical applications[J]. Nanoscale, 2014,6(16):9477-9493.
doi: 10.1039/C4NR02814G |
[26] |
WANG S Y, YAN F, REN P, et al. Incorporation of metal-organic frameworks into electrospun chitosan/poly (vinyl alcohol) nanofibrous membrane with enhanced antibacterial activity for wound dressing application[J]. International Journal of Biological Macromolecules, 2020,158:9-17.
doi: 10.1016/j.ijbiomac.2020.04.116 |
[27] |
MOMIN M, MISHRA V, GHARAT S, et al. Recent advancements in cellulose-based biomaterials for management of infected wounds[J]. Expert Opinion on Drug Delivery, 2021,18(11):1741-1760.
doi: 10.1080/17425247.2021.1989407 |
[28] |
HAKKARAINEN T, KOIVUNIEMI R, KOSONEN M, et al. Nanofibrillar cellulose wound dressing in skin graft donor site treatment[J]. Journal of Controlled Release, 2016,244:292-301.
doi: 10.1016/j.jconrel.2016.07.053 |
[29] |
PASARIBU K M, GEA S, ILYAS S, et al. Fabrication and in-vivo study of micro-colloidal zanthoxylum acanthopodium-loaded bacterial cellulose as a burn wound dressing[J]. Polymers, 2020,12(7) : 1436. DOI: 10.3390/polym12071436.
doi: 10.3390/polym12071436 |
[30] |
ABAZARI M F, GHOLIZADEH S, KARIZI S Z, et al. Recent advances in cellulose-based structures as the wound-healing biomaterials: a clinically oriented review[J]. Applied Sciences, 2021,11(17):7769-7769.
doi: 10.3390/app11177769 |
[31] |
TEIXEIRA M A, PAIVA M C, AMORIM M T P, et al. Electrospun nanocomposites containing cellulose and its derivatives modified with specialized biomolecules for an enhanced wound healing[J]. Nanomaterials, 2020,10(3). DOI: 10.3390/nano10030557.
doi: 10.3390/nano10030557 |
[32] |
VATANKHAH E, PRABHAKARAN M P, JIN G R, et al. Development of nanofibrous cellulose acetate/gelatin skin substitutes for wound treatment applications[J]. Journal of Biomaterials Applications, 2014,28(6):909-921.
doi: 10.1177/0885328213486527 |
[33] |
HUANG R, LI W Z, LV X X, et al. Biomimetic LBL structured nanofibrous matrices assembled by chitosan/collagen for promoting wound healing[J]. Biomaterials, 2015,53:58-75.
doi: 10.1016/j.biomaterials.2015.02.076 |
[34] | 白爽, 侯登勇, 沈先荣, 等. 新型静电纺丝伤口敷料的止血性能及促愈合作用研究[J]. 中国海洋药物, 2019,38(2):1-10. |
BAI Shuang, HOU Dengyong, SHEN Xianrong, et al. Study on hemostatic property and wound healing effects of new electrostatic spinning wound dressing[J]. Chinese Journal of Marine Drugs, 2019,38(2):1-10. | |
[35] |
BOHN G, LIDEN B, SCHULTZ G, et al. Ovine-based collagen matrix dressing: next-generation collagen dressing for wound care[J]. Advances in Wound Care, 2016,5(1):1-10.
doi: 10.1089/wound.2015.0660 |
[36] | 李晓龙, 陈婷, 张兴群. Ⅰ型胶原蛋白纳米纤维膜的制备及结构表征[J]. 食品与药品, 2016,18(2):83-86. |
LI Xiaolong, CHEN Ting, ZHANG Xingqun. Preparation and structure characterization of type Ⅰcollagen nanofiber membrane[J]. Food and Drug, 2016,18(2):83-86. | |
[37] |
LIU S J, KAU Y C, CHOU C Y, et al. Electrospun PLGA/collagen nanofibrous membrane as early-stage wound dressing[J]. Journal of Membrane Science, 2010,355(1/2):53-59.
doi: 10.1016/j.memsci.2010.03.012 |
[38] | 余丕军, 王露萍, 郭妤, 等. 蛋白质-多糖复合纳米纤维膜用于皮肤缺损修复实验研究[J]. 中国医学工程, 2010,18(4):1-4,9. |
YU Pijun, WANG Luping, GUO Yu, et al. Experimental research on repair of skin loss with protein-glycans compound nanofiber membrane[J]. China Medical Engineering, 2010,18(4):1-4,9. | |
[39] |
CHENG W L, ZHANG Z Y, XU R D, et al. Incorporation of bacteriophages in polycaprolactone/collagen fibers for antibacterial hemostatic dual-function[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2018,106(7):2588-2595.
doi: 10.1002/jbm.b.34075 |
[40] |
CHEIRMADURAI K, THANIKAIVELAN P, MURALI R. Highly biocompatible collagen-Delonix regia seed polysaccharide hybrid scaffolds for antimicrobial wound dressing[J]. Carbohydrate Polymers, 2016,137:584-593.
doi: 10.1016/j.carbpol.2015.11.015 |
[41] | 姜波, 蒋玉东, 关瑛, 等. 丝素蛋白材料在皮肤创伤愈合中的研究进展[J]. 现代生物医学进展, 2019,19(6):1197-1200. |
JIANG Bo, JIANG Yudong, GUAN Ying, et al. Research progress of silk fibroin biomaterials in skin healing[J]. Progress in Modern Biomedicine, 2019,19(6):1197-1200. | |
[42] | 高保东, 张岩, 唐文超, 等. 丝素基伤口敷料研究进展[J]. 纺织学报, 2016,37(7):162-168. |
GAO Baodong, ZHANG Yan, TANG Wenchao, et al. Research progress of wound dressing based on silk fibroin[J]. Journal of Textile Research, 2016,37(7):162-168. | |
[43] | 吴建兵, 夏娟. 创伤修复用丝素蛋白敷料的研究进展[J]. 丝绸, 2020,57(10):29-33. |
WU Jianbing, XIA Juan. Research progress of silk fibroin dressings for wound healing[J]. Journal of Silk, 2020,57(10):29-33. | |
[44] |
CHOMACHAYI M D, SOLOUK A, MIRZADEH H. Electrospun silk-based nanofibrous scaffolds: fiber diameter and oxygen transfer[J]. Progress in Biomaterials, 2016,5(1):71-80.
doi: 10.1007/s40204-016-0046-6 |
[45] |
MA X, WU G M, DAI F F, et al. Chitosan/polydopamine layer by layer self-assembled silk fibroin nanofibers for biomedical applications[J]. Carbohydrate Polymers, 2021,251. DOI: 10.1016/j.carbpol.2020.117058.
doi: 10.1016/j.carbpol.2020.117058 |
[46] |
ZHANG Q, WANG N, HU R Q, et al. Wet spinning of bletilla striata polysaccharide/silk fibroin hybrid fibers[J]. Materials Letters, 2015,161:576-579.
doi: 10.1016/j.matlet.2015.09.031 |
[47] | 秦益民. 海藻酸医用敷料吸湿机理分析[J]. 纺织学报, 2005,26(1):113-115. |
QIN Yimin. Absorption mechanism analysis about alginate wound dressings[J]. Journal of Textile Research, 2005,26(1):113-115. | |
[48] | 王锐, 莫小慧, 王晓东. 海藻酸盐纤维应用现状及发展趋势[J]. 纺织学报, 2014,35(2):145-152. |
WANG Rui, MO Xiaohui, WANG Xiaodong. Current status and development trend of application of alginate fiber[J]. Journal of Textile Research, 2014,35(2):145-152. | |
[49] | 王建坤, 邓浩, 霍旭蒙, 等. 海藻酸钙纤维及其混纺针织纱的开发[J]. 天津工业大学学报, 2016,35(1):22-27. |
WANG Jiankun, DENG Hao, HUO Xumeng, et al. Development of calcium alginate fibers and its blended knitting yarn[J]. Journal of Tiangong University, 2016,35(1):22-27. | |
[50] | 房乾, 王荣武, 吴海波. 海藻纤维针刺复合医用敷料吸湿透气性能的研究[J]. 产业用纺织品, 2015,33(2):24-28. |
FANG Qian, WANG Rongwu, WU Haibo. Research on the moisture adsorption and air permeability of alginate needle-punched composite wound dressing[J]. Technical Textiles, 2015,33(2):24-28. | |
[51] |
HE Y, ZHANG N, GONG Q, et al. Alginate/graphene oxide fibers with enhanced mechanical strength prepared by wet spinning[J]. Carbohydrate Polymers, 2012,88(3):1100-1108.
doi: 10.1016/j.carbpol.2012.01.071 |
[52] |
BI H Y, FENG T Y, LI B B, et al. In vitro and in vivo comparison study of electrospun PLA and PLA/PVA/SA fiber membranes for wound healing[J]. Polymers, 2020,12(4). DOI: 10.3390/polym12040839.
doi: 10.3390/polym12040839 |
[53] | 王燕, 陈华. 海洋源多糖和蛋白类医用材料研究与应用进展[J]. 现代化工, 2018,38(6):33-37,39. |
WANG Yan, CHEN Hua. Research and application progress in marine polysaccharide and protein biomedical materials[J]. Modern Chemical Industry, 2018,38(6):33-37,39. | |
[54] |
UPPAL R, RAMASWAMY G N, ARNOLD C, et al. Hyaluronic acid nanofiber wound dressing-production, characterization, and in vivo behavior[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2011,97B(1):20-29.
doi: 10.1002/jbm.b.31776 |
[55] |
SEON-LUTZ M, COUFFIN A-C, VIGNOUD S, et al. Electrospinning in water and in situ crosslinking of hyaluronic acid/cyclodextrin nanofibers: towards wound dressing with controlled drug release[J]. Carbohydrate Polymers, 2019,207:276-287.
doi: 10.1016/j.carbpol.2018.11.085 |
[56] |
SNETKOV P, MOROZKINA S, OLEKHNOVICH R, et al. Curcumin/usnic acid-loaded electrospun nanofibers based on hyaluronic acid[J]. Materials, 2020,13(16). DOI: 10.3390/ma13163476.
doi: 10.3390/ma13163476 |
[57] |
FAHMY H M, ALY A A, ABOU-OKEIL A. A non-woven fabric wound dressing containing layer-by-layer deposited hyaluronic acid and chitosan[J]. International Journal of Biological Macromolecules, 2018,114:929-934.
doi: 10.1016/j.ijbiomac.2018.03.149 |
[58] | MOVAFFAGH J, FAZLY-BAZZAZ B S, YAZDI A T, et al. Wound healing and antimicrobial effects of chitosan-hydrogel/honey compounds in a rat full-thickness wound model[J]. Wounds-A Compendium of Clinical Research and Practice, 2019,31(9):228-235. |
[59] |
DAI T H, TANAKA M, HUANG Y Y, et al. Chitosan preparations for wounds and burns: antimicrobial and wound-healing effects[J]. Expert Review of Anti-Infective Therapy, 2011,9(7):857-879.
doi: 10.1586/eri.11.59 |
[60] |
MATTIOLI-BELMONTE M, ZIZZI A, LUCARINI G, et al. Chitin nanofibrils linked to chitosan glycolate as spray, gel, and gauze preparations for wound repair[J]. Journal of Bioactive and Compatible Polymers, 2007,22(5):525-538.
doi: 10.1177/0883911507082157 |
[61] |
ABDEL-MOHSEN A M, JANCAR J, MASSOUD D, et al. Novel chitin/chitosan-glucan wound dressing: Isolation, characterization, antibacterial activity and wound healing properties[J]. International Journal of Pharmaceutics, 2016,510(1):86-99.
doi: 10.1016/j.ijpharm.2016.06.003 |
[62] |
IGNATOVA M, MANOLOVA N, RASHKOV I. Novel antibacterial fibers of quaternized chitosan and poly(vinyl pyrrolidone) prepared by electrospinning[J]. European Polymer Journal, 2007,43(4):1112-1122.
doi: 10.1016/j.eurpolymj.2007.01.012 |
[63] |
CAI N, LI C, HAN C, et al. Tailoring mechanical and antibacterial properties of chitosan/gelatin nanofiber membranes with Fe3O4 nanoparticles for potential wound dressing application[J]. Applied Surface Science, 2016,369:492-500.
doi: 10.1016/j.apsusc.2016.02.053 |
[64] | 桑彩霞, 王建坤. 海藻纤维医用敷料及其抗菌改性研究[J]. 针织工业, 2021(7):51-56. |
SANG Caixia, WANG Jiankun. Alginate fiber based medical dressing and its antibacterial modification[J]. Knitting Industries, 2021(7):51-56. | |
[65] | 王海楼, 肖瑶, 王道, 等. 载银海藻酸钙纤维水刺非织造布的制备及其抗菌性能[J]. 产业用纺织品, 2019,37(12):7-11. |
WANG Hailou, XIAO Yao, WANG Dao, et al. Preparation of silver loaded calcium alginate fiber spunlaced nonwovens and their antibacterial performance[J]. Technical Textiles, 2019,37(12):7-11. | |
[66] |
MIRAFTAB M, MASOOD R, EDWARD-JONES V. A new carbohydrate-based wound dressing fibre with superior absorption and antimicrobial potency[J]. Carbohydrate Polymers, 2014,101:1184-1190.
doi: 10.1016/j.carbpol.2013.10.058 |
[67] |
SAGHAZADEH S, RINOLDI C, SCHOT M, et al. Drug delivery systems and materials for wound healing applications[J]. Advanced Drug Delivery Reviews, 2018,127:138-166.
doi: 10.1016/j.addr.2018.04.008 |
[68] |
BHISE N S, SHMUELI R B, SUNSHINE J C, et al. Drug delivery strategies for therapeutic angiogenesis and antiangiogenesis[J]. Expert Opinion on Drug Delivery, 2011,8(4):485-504.
doi: 10.1517/17425247.2011.558082 |
[69] |
SCHNEIDER A, WANG X Y, KAPLAN D L, et al. Biofunctionalized electrospun silk mats as a topical bioactive dressing for accelerated wound heating[J]. Acta Biomaterialia, 2009,5(7):2570-2578.
doi: 10.1016/j.actbio.2008.12.013 |
[70] |
MIGUEL S P, SIMOES D, MOREIRA A F, et al. Production and characterization of electrospun silk fibroin based asymmetric membranes for wound dressing applications[J]. International Journal of Biological Macromolecules, 2019,121:524-535.
doi: 10.1016/j.ijbiomac.2018.10.041 |
[71] |
SEON-LUTZ M, COUFFIN A C, VIGNOUD S, et al. Electrospinning in water and in situ crosslinking of hyaluronic acid/cyclodextrin nanofibers: towards wound dressing with controlled drug release[J]. Carbohydrate Polymers, 2019,207:276-287.
doi: 10.1016/j.carbpol.2018.11.085 |
[72] |
LI T T, ZHONG Y Q, PENG H K, et al. Multiscale composite nanofiber membranes with asymmetric wetability: preparation, characterization, and applications in wound dressings[J]. Journal of Materials Science, 2021,56(6):4407-4419.
doi: 10.1007/s10853-020-05531-4 |
[73] |
ADELI H, KHORASANI M T, PARVAZINIA M. Wound dressing based on electrospun PVA/chitosan/starch nanofibrous mats: fabrication, antibacterial and cytocompatibility evaluation and in vitro healing assay[J]. International Journal of Biological Macromolecules, 2019,122:238-254.
doi: 10.1016/j.ijbiomac.2018.10.115 |
[74] | 秦益民. 制作医用敷料的羧甲基纤维素纤维[J]. 纺织学报, 2006,27(7):97-99. |
QIN Yimin. Carboxymethyl cellulose fibers used for wound dressings[J]. Journal of Textile Research, 2006,27(7):97-99. | |
[75] |
ZHONG S P, ZHANG Y Z, LIM C T. Tissue scaffolds for skin wound healing and dermal reconstruction[J]. Wiley Interdisciplinary Reviews-Nanomedicine and Nanobiotechnology, 2010,2(5):510-525.
doi: 10.1002/wnan.v2:5 |
[76] |
MANSBRIDGE J N. Tissue-engineered skin substitutes in regenerative medicine[J]. Current Opinion in Biotechnology, 2009,20(5):563-567.
doi: 10.1016/j.copbio.2009.08.008 |
[77] |
LYNCH C R, KONDIAH P P D, CHOONARA Y E. Advanced strategies for tissue engineering in regenerative medicine: a biofabrication and biopolymer perspective[J]. Molecules, 2021,26(9).DOI: 10.3390/molecules26092518.
doi: 10.3390/molecules26092518 |
[78] |
AMBHORKAR P, RAKIN R H, WANG Z J, et al. Biofabrication strategies for engineering heterogeneous artificial tissues[J]. Additive Manufacturing, 2020,36. DOI: 10.1016/j.addma.2020.101459.
doi: 10.1016/j.addma.2020.101459 |
[79] |
SUNDARAMURTHI D, KRISHNAN U M, SETHURAMAN S. Electrospun nanofibers as scaffolds for skin tissue engineering[J]. Polymer Reviews, 2014,54(2):348-376.
doi: 10.1080/15583724.2014.881374 |
[80] |
MELE E. Electrospinning of natural polymers for advanced wound care: towards responsive and adaptive dressings[J]. Journal of Materials Chemistry B, 2016,4(28):4801-4812.
doi: 10.1039/C6TB00804F |
[81] |
DEL BAKHSHAYESH A R, MOSTAFAVI E, ALIZADEH E, et al. Fabrication of three-dimensional scaffolds based on nano-biomimetic collagen hybrid constructs for skin tissue engineering[J]. Acs Omega, 2018,3(8):8605-8611.
doi: 10.1021/acsomega.8b01219 |
[82] |
NOH H K, LEE S W, KIM J M, et al. Electrospinning of chitin nanofibers: degradation behavior and cellular response to normal human keratinocytes and fibroblasts[J]. Biomaterials, 2006,27(21):3934-3944.
doi: 10.1016/j.biomaterials.2006.03.016 |
[83] |
ZHOU Y S, YANG D Z, CHEN X M, et al. Electrospun water-soluble carboxyethyl chitosan/poly(vinyl alcohol) nanofibrous membrane as potential wound dressing for skin regeneration[J]. Biomacromolecules, 2008,9(1):349-354.
doi: 10.1021/bm7009015 |
[84] |
SUNDARAMURTHI D, VASANTHAN K S, KUPPAN P, et al. Electrospun nanostructured chitosan-poly(vinyl alcohol) scaffolds: a biomimetic extracellular matrix as dermal substitute[J]. Biomedical Materials, 2012,7(4). DOI: 10.1088/1748-6041/7/4/045005.
doi: 10.1088/1748-6041/7/4/045005 |
[85] | DHANDAYUTHAPANI B, KRISHNAN U M, SETHURAMAN S. Fabrication and characterization of chitosan-gelatin blend nanofibers for skin tissue engineering[J]. Journal of Biomedical Materials Research Part B-Applied Biomaterials, 2010,94b(1):264-272. |
[86] |
SINGH P, MAPARU A K, SHAH S, et al. Biomimetic algal polysaccharide coated 3D nanofibrous scaffolds promote skin extracellular matrix formation[J]. Materials Science & Engineering C-Materials for Biological Applications, 2020. DOI: 10.1016/j.msec.2020.111580.
doi: 10.1016/j.msec.2020.111580 |
[1] | 乔燕莎, 毛迎, 徐丹瑶, 李彦, 李绍杰, 王璐, 唐健雄. 用于应对疝修补术后并发症的经编补片研究进展[J]. 纺织学报, 2022, 43(03): 1-7. |
[2] | 李田华, 李晶晶, 张克勤, 赵荟菁, 孟凯. 螺旋型人工血管内的血流动力学数值模拟[J]. 纺织学报, 2022, 43(03): 17-23. |
[3] | 方镁淇, 王茜, 李彦, 李超婧, 黎昊, 王璐. 女性压力性尿失禁吊带的设计及其体外力学性能评价[J]. 纺织学报, 2022, 43(03): 38-43. |
[4] | 卢俊, 管晓宁, 林婧, 劳继红, 王富军, 李彦, 王璐. 人工韧带疲劳测试装置设计及其耐疲劳性能评价[J]. 纺织学报, 2021, 42(11): 71-76. |
[5] | 卢俊, 王富军, 劳继红, 王璐, 林婧. 复合载荷下不同结构编织人工韧带的有限元分析[J]. 纺织学报, 2021, 42(08): 84-89. |
[6] | 苏梦茹, 邹婷, 陈颀超, 李超婧, 王富军, 王璐. 医用倒刺缝合线的研究进展[J]. 纺织学报, 2021, 42(05): 178-184. |
[7] | 王春红, 李明, 龙碧旋, 才英杰, 王利剑, 左祺. 聚乙烯醇/海藻酸钠/黄连素医用敷料制备及其性能[J]. 纺织学报, 2021, 42(05): 16-22. |
[8] | 蒋君莹, 高晶, 张剑. 吻合口加固修补组件背衬面料的选择与防漏性能评价[J]. 纺织学报, 2021, 42(04): 69-73. |
[9] | 陈君妍, 鞠敬鸽, 邓南平, 杨琪, 程博闻, 康卫民. 兔毛基中空碳纤维在锂硫电池中的应用[J]. 纺织学报, 2021, 42(03): 56-63. |
[10] | 殷聚辉, 郭静, 王艳, 曹政, 管福成, 刘树兴. 基于海藻酸钠/磷虾蛋白的支架材料制备及其性能[J]. 纺织学报, 2021, 42(02): 53-59. |
[11] | 杨刚, 李海迪, 乔燕莎, 李彦, 王璐, 何红兵. 聚乳酸-己内酯/纤维蛋白原纳米纤维基补片的制备与表征[J]. 纺织学报, 2021, 42(01): 40-45. |
[12] | 杨宇晨, 覃小红, 俞建勇. 静电纺纳米纤维功能性纱线的研究进展[J]. 纺织学报, 2021, 42(01): 1-9. |
[13] | 汪希铭, 程凤, 高晶, 王璐. 交联改性对敷料用壳聚糖/聚氧化乙烯纳米纤维膜性能的影响[J]. 纺织学报, 2020, 41(12): 31-36. |
[14] | 张倩, 毛吉富, 吕璐瑶, 徐仲棉, 王璐. 腱骨修复用缝线在锚钉孔眼处的耐磨性能及其影响因素[J]. 纺织学报, 2020, 41(12): 66-72. |
[15] | 刘明洁, 林婧, 关国平, BROCHU G, GUIDOIN R, 王璐. 典型纺织基人工韧带及其移出物结构与力学性能[J]. 纺织学报, 2020, 41(11): 66-72. |
|