纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 63-69.doi: 10.13475/j.fzxb.20211200707

• 纺织工程 • 上一篇    下一篇

赛络菲尔包缠纱结构建模分析与性能优化

刘帅, 郭晨宇, 陈鹤文, 杨瑞华()   

  1. 江南大学 生态纺织教育部重点实验室, 江苏 无锡 214122
  • 收稿日期:2021-12-06 修回日期:2022-10-31 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 杨瑞华(1981—),女,教授,博士。主要研究方向为新型纺纱方法。E-mail:yangrh@jiangnan.edu.cn
  • 作者简介:刘帅(2001—),男。主要研究方向为新型纺纱技术。
  • 基金资助:
    国家自然科学基金面上项目(52273034);江苏省自然科学基金面上项目(BK20181350)

Model analysis on structure of ring spun Sirofil wrapped yarn and its property optimization

LIU Shuai, GUO Chenyu, CHEN Hewen, YANG Ruihua()   

  1. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
  • Received:2021-12-06 Revised:2022-10-31 Published:2023-04-15 Online:2023-05-12

摘要:

为定量预测实际生产中赛络菲尔(Sirofil)包缠纱的性能,分析了其成纱加捻过程和特点。根据加捻三角区中的几何关系,推导出三角区纱线质心相对锭子偏移距离与纱线捻回角的关系,并得出半个捻回纱线质量的计算公式;对加捻三角区进行受力分析得到力矩平衡方程,解释了Z捻纱捻度由下向上的传递规律,分析了长丝与短纤须条的相对位置对Sirofil包缠纱强力的影响;最后对模型求解并进行实验验证。模型计算和实验结果表明:隔距变大纱线质心偏移距离变大,须条捻回角减小;汇聚点之上单纱捻向与汇聚点之下传递捻向相同,且短纤须条位于长丝左侧时所加的捻度较之在右侧时多。该模型和实验为Sirofil包缠纱性能和结构的分析提供了参考。

关键词: 赛络菲尔包缠纱, 环锭纺, 纱线结构, 加捻三角区, 捻回角

Abstract:

Objective Compared with the traditional ring spinning, Sirofil two-component yarn possesses higher strength and smoother surface. In order to optimize the performance of Sirofil wrapped yarn, including hairiness, evenness and strength, the influence of the relative position and spacing distance of filament and staple strand on the yarn properties was explored. Additionally, the combination of theoretical modeling and experiment were employed to quantitatively analyse and predict the performance of ring spun Sirofil wrapped yarn in practical manufacturing.
Method To analyze the twisting process and characteristics of the Sirofil wrapped yarn, the numerical analysis of the twisting triangle were carried out, and the model is established based on the geometric relationship of filament and staple strand in the twisting triangle and the force analysis of the twisting triangle. The hairiness, evenness and strength of sirofil wrapped yarn were tested by experiments, the results of which were used to validate the model.
Results The relationship between the offset distance of the centroid of the Sirofil wrapped yarn relative to the spindle axis and the yarn twisting angle in the triangle area was deduced and the equation for calculating the quality of half twisted yarn was established. In accordance with the force analysis of the twisting triangle, the moment balance equation was attained and the twist transfer rule of Z-twisting yarn was explained. The analysis results showed that with the increase of the distance, the offset distance of the centroid of the twisting triangle relative to the spindle axis was increased, and the twist angle of the staple strand was decreased(Tab. 3). Therefore, the slippage length of the staple fibers became longer and the proportion of the strength of the short fiber bundles in the axial direction of the yarn got larger, making greater contribution of the fiber to the yarn strength leading to improved yarn strength. Torque contributed by filament and staple strand shows that the twist angle of the filament was smaller than that of the staple strand, and the proportion of the torque in the axial direction of the yarn was larger(Tab. 4). Therefore, the filament is regarded as the main contributor to the strength of the Sirofil wrapped yarn. Furthermore, when the filament position was on the right, the staple strand would obtain a larger number of twists with better wrapping effect which is conducive to enhance the yarn quality. Through the comparison of 3 mm, 4 mm and 5 mm spacing distances, it was seen that 5 mm was the best spacing distance between filament and staple strand of Sirofil wrapped yarn. It is evident that the experimental results showed good consistency with the conclusion of model analysis(Fig. 5).
Conclusion In this paper, the force model of twisting triangle zone is established based on results from mechanical analysis and experimental investigation, and the influence of the relative position and distance between filament and staple fiber on the yarn properties is studied. The calculation and verification results show that the larger the yarn centroid offset distance is, the smaller the twist return angle is, and the twist direction above the convergence point is the same as the real twist direction below the convergence point. The twist of the staple filament is greater when it is on the left side of the filament. The model provides theoretical and experimental guidance for practical quantitative analysis and process design.

Key words: Sirofil wrapped yarn, ring spinning, yarn structure, twisting triangle area, twist angle

中图分类号: 

  • TS104

图1

长丝与短纤须条不同相对位置的包缠纺纱示意图"

图2

长丝和短纤须条加捻图"

图3

纱线理想模型图"

图4

加捻三角区受力分析"

表1

棉与涤纶纤维性能指标"

纤维种类 线密度/
dtex
体积质量/
(g·cm-3)
断裂强
力/cN
摩擦
因数
棉纤维 1.84 1.54 5.34 0.40
涤纶 1.33 1.38 8.06 0.38

表2

短纤须条10 cm内捻回数"

长丝位于
短纤位置
不同长丝与短纤距离下10 cm内捻回数
3 mm 4 mm 5 mm
左侧 5.10 5.25 5.30
右侧 5.15 5.28 5.33

表3

不同隔距短纤须条相关参数计算结果"

长丝与
短纤维
须条隔
距/mm
须条
捻回
角/
(°)
质心相
对锭子
轴线距
离/mm
须条半
个捻回
质量/
(10-4 g)
须条半
个捻回
长度/
mm
须条表
层纤维
捻回
角/(°)
须条临
界滑脱
长度/
mm
长丝表
层纤维
捻回
角/(°)
3 36.25 0.70 1.72 2.330 16.04 3.48 14.93
4 23.20 0.93 1.50 2.273 15.25 3.83 8.53
5 19.29 1.02 1.45 2.251 14.86 4.03 8.13

表4

须条和长丝贡献的力矩"

隔距/mm 须条贡献力矩 长丝贡献力矩
3 0.33M2+0.012 39T 0.99M2+0.008 6T
4 0.351M2+0.006 79T 0.966M2+0.004 7T
5 0.424M2+0.006 65T 0.989M2+0.004 6T

图5

Sirofil包缠纱成纱性能"

[1] XIA Z G, LIU H, HUANG J J, et al. A study on the influence of a surface-contacting spinning strand on yarn appearance during sirofil spinning[J]. Textile Research Journal, 2015, 85(2): 128-139.
doi: 10.1177/0040517514542863
[2] 王元峰, 冯艳飞, 夏治刚. 复合纱体中长丝分布形态对纱线性能的影响[J]. 纺织学报, 2017, 38(9): 32-39.
WANG Yuanfeng, FENG Yanfei, XIA Zhigang. Influence of filament distribution pattern on properties of composite yarns[J]. Journal of Textile Research, 2017, 38(9): 32-39.
[3] 曹梦龙, 徐伯俊, 苏旭中, 等. 三种不同工艺条件对新型sirofil-spun三色花式纱外观与成纱质量的影响[J]. 丝绸, 2016, 53(7): 27-31.
CAO Menglong, XU Bojun, SU Xuzhong, et al. Effects of three different process conditions on appearance and yarn quality of new sirofil-spun tricolor fancy yarn[J]. Journal of Silk, 2016, 53(7): 27-31.
[4] 吕立斌, 杜梅. 涤棉丝Sirofil复合纱的结构与性能[J]. 棉纺织技术, 2009, 37(12): 17-20.
LÜ Libin, DU Mei. Structure and properties of polyester/cotton Sirofil composite yarn[J]. Cotton Textile Technology, 2009, 37(12): 17-20.
[5] WANG X. Recent research on yarn hairiness testing and reduction: part-reduction of yarn hairiness[J]. Research Journal of Textile and Apparel, 1999, 3(1): 1-8.
[6] WANG X A, CHANG L L. Reducing yarn hairiness with a modified yarn path in worsted ring spinning[J]. Textile Research Journal, 2003, 73(4): 327-332.
doi: 10.1177/004051750307300409
[7] SINGH C, GORDON S, WANG X G. The mechanism of hairiness reduction in offset ring spinning with a diagonal yarn path[J]. Textile Research Journal, 2019, 89(12): 1546-1556.
doi: 10.1177/0040517518775915
[8] 于伟东, 储才元. 纺织物理[M]. 第2版. 上海: 东华大学出版社, 2009:282.
YU Weidong, CHU Caiyuan. Textile physics[M]. 2nd ed. Shanghai: Donghua University Press, 2009:282.
[9] 姜展, 孙娜, 杨建平, 等. 基于临界滑脱长度的短纤纱断裂强力计算[J]. 纺织学报, 2017, 38(2): 60-67.
JIANG Zhan, SUN Na, YANG Jianping, et al. Calculation of breaking strength of staple yarn based on critical slippage length[J]. Journal of Textile Research, 2017, 38(2): 60-67.
[10] 陈怀智. 赛络纺纱线的捻度[J]. 毛纺科技, 1998(4): 3-6.
CHEN Huaizhi. Twist of siro spinning yarn[J]. Wool Textile Journal, 1998(4): 3-6.
[11] 陈怀智. 再论赛络纺纱线的捻度——兼与侯秀良等先生商榷[J]. 毛纺科技, 2000(4): 14-19.
CHEN Huaizhi. Discuss the twist of siro spinning yarn again: discuss with Mr. Hou Xiuliang[J]. Wool Textile Journal, 2000(4): 14-19.
[12] 季涛, 缪爱东. 关于赛络纺纱捻度的分析[J]. 纺织科学研究, 1997(4): 46-48.
JI Tao, MIAO Aidong. Analysis of siro spinning twist[J]. Textile Science Research, 1997(4): 46-48.
[1] 史晶晶, 杨恩龙. 赛络纺棉/毛段彩纱结构及其性能[J]. 纺织学报, 2023, 44(03): 55-59.
[2] 郑小虎, 刘正好, 陈峰, 刘志峰, 汪俊亮, 侯曦, 丁司懿. 环锭纺纱全流程机器人自动化生产关键技术[J]. 纺织学报, 2022, 43(09): 11-20.
[3] 汪军, 史倩倩, 李玲, 张玉泽. 双喂给双分梳转杯纺技术研究进展[J]. 纺织学报, 2022, 43(08): 12-20.
[4] 郭明瑞, 高卫东. 两通道环锭纺单区牵伸纺制段彩竹节纱的方法及其特点[J]. 纺织学报, 2022, 43(08): 21-26.
[5] 杨瑞华, 潘博, 郭霞, 王利军, 李健伟. 环锭纺及转杯纺和喷气涡流纺混色纱的纤维混合效果研究[J]. 纺织学报, 2021, 42(07): 76-81.
[6] 倪洁, 杨建平, 郁崇文. 股线与单纱捻系数比对粘胶股线性能的影响[J]. 纺织学报, 2021, 42(05): 46-50.
[7] 殷士勇, 鲍劲松, 唐仕喜, 杨芸. 环锭纺纱信息物理生产系统建模方法[J]. 纺织学报, 2021, 42(02): 65-73.
[8] 李浩, 邢明杰, 孙志豪, 吴瑶. 基于图像的喷气涡流纺纱线捻度测试方法探讨[J]. 纺织学报, 2021, 42(02): 60-64.
[9] 张婷婷, 薛元, 徐志武, 于健, 陈连光. 三通道数码纺混色纱色谱体系构建及其彩色纱性能分析[J]. 纺织学报, 2019, 40(09): 48-55.
[10] 殷士勇, 鲍劲松, 孙学民, 王佳铖. 基于信息物理系统的环锭纺纱智能车间温度闭环精准控制方法[J]. 纺织学报, 2019, 40(02): 159-165.
[11] 贺玉东 薛元 杨瑞华 刘曰兴 张国清. 双通道环锭数码纺混色纱的结构及其性能[J]. 纺织学报, 2018, 39(11): 27-32.
[12] 刘春 谢春萍 苏旭中 刘新金. 假捻器在环锭细纱机上的应用效果及工艺优化[J]. 纺织学报, 2018, 39(07): 27-31.
[13] 李沛赢 郭明瑞 高卫东. 应用给湿装置改善环锭纺成纱毛羽[J]. 纺织学报, 2018, 39(05): 108-112.
[14] 吕汉明 吴擎擎 吕鑫 马崇启 周鹏飞. 基于数据库的环锭纺细纱机细纱断头检测与信息显示[J]. 纺织学报, 2018, 39(04): 123-129.
[15] 顾燕 薛元 高卫东 杨瑞华 郭明瑞. 采用三通道数码纺的色彩渐变纱性能[J]. 纺织学报, 2018, 39(02): 62-67.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!