纺织学报 ›› 2023, Vol. 44 ›› Issue (05): 84-92.doi: 10.13475/j.fzxb.20211200801

• 纤维材料 • 上一篇    下一篇

基于近红外光谱和残差神经网络的异性纤维分类识别

李学良1,2, 杜玉红1,2(), 任维佳1,2, 左恒力1,2   

  1. 1.天津工业大学 机械工程学院, 天津 300387
    2.天津工业大学 天津市现代机电装备技术重点实验室, 天津 300387
  • 收稿日期:2021-12-06 修回日期:2022-05-18 出版日期:2023-05-15 发布日期:2023-06-09
  • 通讯作者: 杜玉红(1974—),女,教授,博士。主要研究方向为图像处理及模式识别、异纤检测。E-mail: dyh202@163.com。
  • 作者简介:李学良(1998—),男,硕士生。主要研究方向为近红外光谱分析和异纤检测。
  • 基金资助:
    国家自然科学基金项目(51205288);天津市自然科学基金项目(17JCYBJC19400)

Classification and identification of foreign fibers based on near-infrared spectroscopy and ResNet

LI Xueliang1,2, DU Yuhong1,2(), REN Weijia1,2, ZUO Hengli1,2   

  1. 1. School of Mechanical Engineering, Tiangong University, Tianjin 300387, China
    2. Key Laboratory of Modern Mechanical and Electrical Equipment Technology, Tiangong University, Tianjin 300387, China
  • Received:2021-12-06 Revised:2022-05-18 Published:2023-05-15 Online:2023-06-09

摘要:

针对传统图像处理方法对棉层中异性纤维检测效果不佳的问题,基于近红外光谱和残差神经网络提出一种对棉层中异性纤维的分类识别方法。采用Savitzky-Golay法对异性纤维的近红外光谱数据进行平滑处理,结合F检验和LightGBM分类算法实现特征波长优选,并将优选后的光谱数据经格拉姆角场转换成保留波长序列之间时序性的格拉姆角和场图像;构建残差深度卷积神经网络模型,将转换后的格拉姆角和场图像作为训练样本对残差网络模型进行训练。实验结果表明,该方法能够有效地对复杂环境下棉层中的异性纤维进行分类,分类准确率达到99.69%,与其它数据转换方式和分类模型相比提高了棉层中异性纤维的分类识别精度,为复杂环境下异性纤维分类识别研究提供了新思路。

关键词: 棉, 异性纤维检测, 近红外光谱, 残差神经网络, 光谱数据, 图像检测

Abstract:

Objective It has been shown that image processing methods can not clearly acquire image characteristics of foreign fibers in cotton layers. In order to solve the problem associated to conventional image processing methods, this paper proposed a classification and identification method for foreign fibers in cotton layers based on near-infrared (NIR) spectroscopy and residual neural networks (ResNet).

Method In this study, 500 groups of foreign fibers spectral data were collected by experiments, including five types of foreign fibers. The spectral collection instrument was a UH4150 spectrophotometer. Savitzky-Golay method was adopted to smooth the spectral data, and F-test and LightGBM classification algorithm was adopted to determine the optimal feature wavelength. The optimal spectral data were converted into Garmian angular summation fields (GASF) images by the Garmian angular field (GAF) method, which preserved the temporal sequences between wavelength sequences. Eventually, the ResNet model was constructed. The GASF images were used as training samples to train the ResNet model.

Results The foreign fibers' spectral data was smoother than the original spectrum by the Savitzky-Golay method. Noisy data at both ends of the spectrum and near the peaks of functional groups were eliminated (Fig.2). After F-test and LightGBM classification algorithm wavelength optimization, 75 optimal wavelengths were selected. When the number of wavelengths was greater than 200, important information was deleted from the foreign fibers' spectral data (Fig.3(a)). When the number of wavelengths was 75, the optimal performance of the optimized model was the best, and the accuracy reached 98.99% (Fig.3(b)). The accuracy of applying the GASF image to the ResNet model is 99.69%(Fig.7(a)). The loss of the training set showed a sharp drop for the first 50 iterations (Figs.7 (b) and (c)). When the number of iterations reached 70, the training set started to converge. When the number of epochs reached 200, the training set tended to be stable. The classification accuracy of gray-scale and time-frequency images was lower than 99.00%, lower than the recognition accuracy of GASF images(Fig.8). The ResNet model improved classification performance compared with machine learning classification models. Compared with the K-nearest-neighbor (KNN) and decision tree (DT), accuracy increased by 6.67% and 7.60%, and recall increased by 6.91% and 7.09%. Compared with the artificial neural network's multi-layer perceptron (MLP), the accuracy and recall increased by 1.22% and 1.36%, respectively. All the classification performances of rope and feather on the ResNet model reached 100%, indicating excellent classification of these two types of foreign fibers. There were no false positives or missed inspections. Only two misjudged cases were found in 640 foreign fibers samples in the test set, the first being the chemical fibers were wrongly judged as PP yarn. Second, the chemical fiber was wrongly identified as plastic bag.

Conclusion The classification and identification model based on GASF and ResNet improved the feature extraction performance of foreign fibers' near infra-red spectra data. This method can effectively identify the foreign fibers in the cotton layer under a complex environment, with a identification accuracy of 99.69%. The classification and identification method of foreign fibers based on spectra combined with the convolution neural network (CNN) provides new research ideas for classifying foreign fibers in a complex environment. In addition, the method provides technical support for developing the sorting device of foreign fibers. Future research will be further extended to cotton quality evaluation fields, such as content detection of foreign fibers.

Key words: cotton, foreign fiber detection, near-infrared spectrum, residual neural network, spectral data, image detection

中图分类号: 

  • TP391.4

图1

实验材料和实验样品实例"

图2

SG平滑滤波前后异性纤维光谱平均反射率"

图3

F检验特征波长优选结果"

图4

各类异性纤维光谱格拉姆角和场转换过程"

图5

卷积神经网络结构"

图6

残差网络模型"

表1

改进后各层网络参数"

层数 类型 卷积核大小/像素 输出尺寸/像素
1 卷积层1 6×6 70×70×16
2 卷积层2 6×6 65×65×32
3 卷积层3 6×6 60×60×32
4 池化层1 3×3 30×30×32
5 卷积层4 3×3 28×28×128
6 卷积层5 3×3 26×26×128
7 卷积层6 3×3 24×24×128
8 池化层2 3×3 12×12×128
9 残差块1 3×3
3×3
12×12×128
10 卷积层7 3×3 10×10×256
11 卷积层8 3×3 8×8×256
12 卷积层9 3×3 6×6×256
13 池化层3 3×3 3×3×256
14 残差块2 3×3
3×3
3×3×256
15 全连接层 1×1 1×1×2 304
16 全连接层 1×1 1×1×1 024

图7

准确率与损失值在训练过程中的变化"

图8

不同转换方式对准确率的影响"

表2

4种分类模型的性能比较"

类别 K-最近邻 决策树 多层感知机 残差神经网络
精确率 召回率 F1 精确率 召回率 F1 精确率 召回率 F1 精确率 召回率 F1
丙纶绳 88.64 91.41 90.00 89.07 89.50 89.28 96.48 98.56 97.52 99.22 100.00 99.61
化学纤维 95.62 94.24 94.92 93.04 95.54 94.27 98.37 99.17 98.77 100.00 98.45 99.22
麻绳 90.68 88.92 89.79 90.85 89.58 90.21 98.33 98.33 98.33 100.00 100.00 100.00
塑料袋 97.78 100.00 98.88 96.40 97.27 96.83 99.17 99.17 99.17 99.22 100.00 99.61
羽毛 92.37 89.34 90.83 91.11 89.13 90.11 100.00 96.40 98.17 100.00 100.00 100.00
总计 93.02 92.78 92.88 92.09 92.60 92.14 98.47 98.33 98.39 99.69 99.69 99.69

图9

异性纤维分类结果混淆矩阵"

[1] 董超群, 杜玉红, 任维佳, 等. 应用光学成像技术检测棉花中异性纤维的研究进展[J]. 纺织学报, 2020, 41(6): 183-189.
DONG Chaoqun, DU Yuhong, REN Weijia, et al. Research progress in optical imaging technology for detecting foreign fibers in cotton[J]. Journal of Textile Research, 2020, 41(6): 183-189.
[2] ZHAO Xuehua, GUO Xiangyun, LUO Jie, et al. Efficient detection method for foreign fibers in cotton[J]. Information Processing in Agriculture, 2018, 5(3): 320-328.
doi: 10.1016/j.inpa.2018.04.002
[3] 张成梁, 李蕾, 董全成, 等. 基于GA-SVM模型的机采籽棉杂质识别[J]. 农业工程学报, 2016, 32(24): 189-196.
ZHANG Chengliang, LI Lei, DONG Quancheng, et al. Recognition for machine picking seed cotton impurities based on GA-SVM model[J]. Transactions of The Chinese Society of Agricultural Engineering, 2016, 32(24): 189-196.
[4] JI Ronghua, LI Daoliang, CHEN Lairong, et al. Classification and identification of foreign fibers in cotton on the basis of a support vector machine[J]. Mathematical and Computer Modelling, 2010, 51(11/12): 1433-1437.
doi: 10.1016/j.mcm.2009.10.007
[5] 常金强, 张若宇, 庞宇杰, 等. 高光谱成像的机采籽棉杂质分类检测[J]. 光谱学与光谱分析, 2021, 41(11): 3552-3558.
CHANG Jinqiang, ZHANG Ruoyu, PANG Yujie, et al. Classification of impurities in machine-harvested seed cotton using hyperspectral imaging[J]. Spectroscopy and Spectral Analysis, 2021, 41(11): 3552-3558.
[6] JIANG Yu, LI Changying. mRMR-Based feature selection for classification of cotton foreign matter using hyperspectral imaging[J]. Computers and Electronics in Agriculture, 2015, 119: 191-200.
doi: 10.1016/j.compag.2015.10.017
[7] HINTON G E, OSINDERO S, TEH Y W. A fast learning algorithm for deep belief nets[J]. Neural Computation, 2006, 18(7): 1527-1554.
doi: 10.1162/neco.2006.18.7.1527 pmid: 16764513
[8] 何晓昀, 韦平, 张林, 等. 基于深度学习的籽棉中异性纤维检测方法[J]. 纺织学报, 2018, 39(6): 131-135.
HE Xiaoyun, WEI Ping, ZHANG Lin, et al. Detection method of foreign fibers in seed cotton based on deep-learning[J]. Journal of Textile Research, 2018, 39(6): 131-135.
[9] WEI Wei, DENG Dexiang, ZENG Lin, et al. Classification of foreign fibers using deep learning and its implementation on embedded system[J]. International Journal of Advanced Robotic Systems, 2019. DOI:10.1177/1729881419867600.
doi: 10.1177/1729881419867600
[10] 郭俊先, 应义斌. 皮棉中杂质检测技术与检出装备的研究进展[J]. 农业机械学报, 2008, 39(7): 107-113.
GUO Junxian, YING Yibin. Progress on detecting technique and sorter of raw cotton foreign matters[J]. Transactions of the Chinese Society for Agricultural Machinery, 2008, 39(7): 107-113.
[11] 李晓静, 虞澜, 祖恩东. 近红外光谱分析技术在宝石研究中的应用[J]. 光谱学与光谱分析, 2018, 38(1): 54-57.
LI Xiaojing, YU Lan, ZU Endong. Application of near infrared spectroscopy in the study of gems[J]. Spectroscopy and Spectral Analysis, 2018, 38(1): 54-57.
[12] 谢军, 潘涛, 陈洁梅, 等. 血糖近红外光谱分析的Savitzky-Golay平滑模式与偏最小二乘法因子数的联合优选[J]. 分析化学, 2010, 38(3): 342-346.
XIE Jun, PAN Tao, CHEN Jiemei, et al. Joint optimization of Savitzky-Golay smoothing models and partial least squares factors for near-infrared spectroscopic analysis of serum glucose[J]. Chinese Journal of Analytical Chemistry, 2010, 38(3): 342-346.
[13] 谢波, 陈岭, 陈根才, 等. 普通话语音情感识别的特征选择技术[J]. 浙江大学学报(工学版), 2007, 41(11): 1816-1822.
XIE Bo, CHEN Ling, CHEN Gencai, et al. Feature selection for emotion recognition of mandarin speech[J]. Journal of Zhejiang University(Engineering Science), 2007, 41(11): 1816-1822.
[14] KE Guolin, MENG Qi, FINLEY T, et al. LightGBM: a highly efficient gradient boosting decision tree[C] // Proceedings of the 31st International Conference on Neural Information Processing Systems. California: Curran Associates Inc, 2017: 3149-3157.
[15] 周挺, 杨军, 周强明, 等. 基于改进LightGBM的电力系统暂态稳定评估方法[J]. 电网技术, 2019, 43(6): 1931-1940.
ZHOU Ting, YANG Jun, ZHOU Qiangming, et al. Power system transient stability assessment method based on modified lightgbm[J]. Power System Technology, 2019, 43(6): 1931-1940.
[16] WANG Zhiguang, OATES Tim. Imaging time-series to improve classification and imputation[C] // Twenty-Fourth International Joint Conference on Artificial Intelligence. Buenos Aires: IJCAI, 2015: 3939-3945.
[17] HE Kaiming, ZHANG Xiangyu, REN Shaoqing, et al. Deep residual learning for iage recognition[C] // Proceedings of The IEEE Conference on Computer Vision and Pattern Recognition. Las Vegas: IEEE, 2016: 770-778.
[18] KINGMA D, BA J. Adam: a method for stochastic optimization[J]. Computer Science, 2014. DOI:10.48550/arXiv.1412.6980.
doi: 10.48550/arXiv.1412.6980
[19] QI Yafeng, YANG Lin, LIU Bangxu, et al. Accurate diagnosis of lung tissues for 2D Raman spectrogram by deep learning based on short-time Fourier transform[J]. Analytica Chimica Acta, 2021. DOI:10.1016/j.aca.2021.338821.
doi: 10.1016/j.aca.2021.338821
[1] 苏旭中, 梁巧敏, 王汇锋, 张娣, 崔益怀. 棉/生物基弹性聚酯纤维混纺针织物的服用性能[J]. 纺织学报, 2023, 44(05): 119-124.
[2] 王雅倩, 万爱兰, 曾登. 棉/形状记忆氨纶纬编免烫衬衫面料制备及其性能评价[J]. 纺织学报, 2023, 44(05): 125-131.
[3] 胡安钟, 王成成, 钟子恒, 张丽平, 付少海. 氮化硼纳米片掺杂型快速响应温致变色织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 164-170.
[4] 易菁源, 裴刘军, 朱赫, 张红娟, 王际平. 非水介质染色体系中分散染料对涤纶/棉混纺织物的沾色研究[J]. 纺织学报, 2023, 44(05): 29-37.
[5] 王小艳, 马子婷, 许长海. 基于高耐碱高耐氧漂分散染料的涤盖棉织物漂染一浴加工工艺[J]. 纺织学报, 2023, 44(05): 38-45.
[6] 杨芸, 孙通, 梁振宇, 彭广, 鲍劲松. 基于异构集成学习的棉纱纱疵定量分析方法[J]. 纺织学报, 2023, 44(05): 93-101.
[7] 谢鹏浩, 李勇, 陈晓川, 汪军. 基于分形的棉条建模及其牵伸过程的仿真[J]. 纺织学报, 2023, 44(04): 55-62.
[8] 齐浩彤, 张林森, 侯秀良, 徐荷澜. 废食用油-水无盐体系活性染色棉织物的服用性能[J]. 纺织学报, 2023, 44(03): 126-131.
[9] 吴佳庆, 王怡婷, 何欣欣, 郭亚飞, 郝新敏, 王迎, 宫玉梅. 混纺比对生物基锦纶56短纤/棉混纺纱力学性能的影响[J]. 纺织学报, 2023, 44(03): 49-54.
[10] 史晶晶, 杨恩龙. 赛络纺棉/毛段彩纱结构及其性能[J]. 纺织学报, 2023, 44(03): 55-59.
[11] 张青青, 倪远, 汪军, 张玉泽, 江慧. 转轮集聚纺纱装置与工艺设计[J]. 纺织学报, 2023, 44(02): 83-89.
[12] 王金坤, 刘秀明, 房宽峻, 乔曦冉, 张帅, 刘冬冬. 双乙烯砜基团活性染料染色对棉织物防皱性能的提升[J]. 纺织学报, 2023, 44(02): 207-213.
[13] 丁娟, 刘阳, 张晓飞, 郝克倩, 宗蒙, 孔雀. Fe/C多孔碳材料制备及其涂层棉织物的吸波性能[J]. 纺织学报, 2023, 44(02): 191-198.
[14] 曲连艺, 刘江龙, 徐英俊, 王玉忠. 仿贻贝型耐久抗菌织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 176-183.
[15] 蒋琦, 刘云, 朱平. 茶多酚基阻燃/防紫外线棉织物的制备及其性能[J]. 纺织学报, 2023, 44(02): 222-229.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!