纺织学报 ›› 2023, Vol. 44 ›› Issue (01): 164-170.doi: 10.13475/j.fzxb.20211201907

• 服装工程 • 上一篇    下一篇

内穿服装对消防员热生理和心理反应的影响

王诗潭1, 江舒1, 王云仪1,2()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.上海市纺织智能制造与工程一带一路国际联合实验室, 上海 200051
  • 收稿日期:2021-12-08 修回日期:2022-10-11 出版日期:2023-01-15 发布日期:2023-02-16
  • 通讯作者: 王云仪(1972—),女,教授,博士。主要研究方向为服装功能设计与性能评价。E-mail:wangyunyi@dhu.edu.cn
  • 作者简介:王诗潭(1992—),女,博士生。主要研究方向为服装人体工效学与功能服装。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2232023G-08);上海市科学技术委员会“科技创新行动计划”“一带一路”国际合作项目(21130750100)

Influence of base clothing on firefighters' physiological and perceptual responses

WANG Shitan1, JIANG Shu1, WANG Yunyi1,2()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Shanghai 200051, China
  • Received:2021-12-08 Revised:2022-10-11 Published:2023-01-15 Online:2023-02-16

摘要:

内穿服装作为消防员贴身穿着的服装,会影响衣下微环境的温湿度及汗液分布,进而影响人体的热生理和心理反应。通过调研确定了4组典型的消防员内穿服装,并开展着装人体热反应实验,测试8名受试者在4种着装条件下的热生理反应和心理反应。利用层次分析法,探究各指标间的内在关联及效应权重,计算了消防服套装的综合得分。结果表明:消防服内穿棉/涤纶短袖和棉/涤纶长裤时人体的皮温、心率、皮肤电反应和湿感觉的综合得分最高,其中心率比其它3组样本小4.31次/min,且湿感觉最不强烈;着装人体的热感觉、湿感觉和黏附感存在区域差异,躯干和大腿的热、湿感觉最强烈,前臂、膝部和小腿的黏附感最强烈;应基于功能分区的设计优化消防员内穿服装,如前胸和后背拼接透气导湿面料,小腿拼接耐磨面料。

关键词: 消防员, 消防服, 内穿服装, 热生理反应, 心理反应

Abstract:

Objective The entire firefighters' protective ensemble includes the turnout gear and base clothing worn. The base clothing is always worn contacting the firefighters' skin and would influence the temperature and relative humidity within the clothing microenvironment as well as the heat and moisture transfer through the garment. This study aimed to investigate the influence of the base clothing on firefighters' physiological and perceptual responses. The outcomes of this study were expected to reveal strategies for combining the optimum clothing style and fabric type of base clothing to improve firefighters' thermal responses and efficiency.
Method A survey was conducted and 203 firefighters' data were collected about the fabric types and configuration styles of the clothing that they wore under their turnout gear. Four base clothing combinations were obtained. Physiological experiments were conducted to detect eight subjects' skin temperature (Tsk), heart rate (HR), galvanic skin response (GSR), overall discomfort sensation, heat sensation, wetness sensation, and adhesion sensation when wearing four types of test samples. Repeated measure analysis of variance was used for the main effects (P<0.05). A four-scale analytic hierarchy process (AHP) model was adopted to determine the comprehensive score of the four base clothing combinations.
Results In the stage of the exercise, S1 presented the lowest Tsk (36.78±0.57) ℃ and was significantly 0.5 ℃ lower than S3 (P=0.00). It was interesting to observe that S2 presented the lowest growth rate of Tsk at the end 10 min of exercise and was 1.8% lower than S3. During the recovery, subjects had the lowest Tsk when wearing S2, which was 0.30 ℃ lower than S3 (P=0.01). The variation of HR was consistent with the result of the Tsk (Fig.6). In comparisons among four test samples, a lower HR in S2 was detected throughout the test. Especially, HR in S2 was 4.31 bpm lower than in S3 (P=0.02) in the exercise. During the recovery stage, HR in S2 continued to be lowest, even where no significant differences were noted (P>0.05). The minimum GSR was reported for S1 among four test samples (Fig.7), which were 1.75 μS lower than S3 (P=0.04). During the last 5 min of exercise, the growth rate was the smallest when wearing S2, which was consistent with the Tsk. The wetness rating in S2 was significantly lower than that of the S3 by 20.37% (P=0.01) during the exercise (Tab.2), which was consistent with the lower GSR in S2. It was also found that the sensation was different in varied body parts. The torso and thighs had the strongest feeling of heat and moisture, and the forearms, knees, and calves have the strongest contact discomfort, such as adhesion and roughness. The AHP model showed the cotton/polyester short-sleeved combined with camouflage trousers had the highest overall score (Tab.3), which facilitates the evaporation of sweat from fully clothed individuals working in high-intensity, thereby reducing the risk of firefighters' thermal strain.
Conclusion Base clothing had impacts on firefighters' physiological or perceptual responses during the exercise and recovery periods. Fabric properties of base clothing, especially sweat evaporation, were observed to have a primary contribution to subjects' thermal responses, no matter what the clothing style was. A cotton/polyester fabric with long pants would be a favorable solution for firefighters to alleviate thermal strain which did not compromise the protection. The optimization of firefighters' base clothing should consider the design of functional zones, such as splicing moisture-permeable and breathable fabrics on the chest and back and splicing flexible fabrics on the calves.

Key words: firefighter, turnout gear, base clothing, physiological response, perceptual response

中图分类号: 

  • TS941.16

图1

内穿服装统计结果词云图"

图2

4组内穿服装及消防服套装示意"

表1

4组内穿服装的基本性能参数"

服装
编号
内穿
服装
材质 厚度/
mm
面密度/
(g·m-2)
透气率/
(mm·s-1)
1 短袖 54%棉,46%涤纶 0.58 162 1 276
短裤 54%棉,46%涤纶 0.58 162 1 276
2 短袖 54%棉,46%涤纶 0.58 162 1 276
长裤 54%棉,46%涤纶 0.56 252 659
3 短袖 100%棉 0.72 168 0637
长裤 100% Nomex® IIIA 0.76 482 0206
4 短袖 100%棉 0.72 168 0637
短裤 100%棉 0.70 176 0630

图3

不同实验样本的总热阻和总湿阻 注:“*”表示样本间存在显著性差异。"

图4

测试流程示意图"

图5

穿着不同实验样本时人体的平均皮温"

图6

穿着不同实验样本时人体的心率"

图7

穿着不同实验样本时人体的皮肤电反应"

表2

Perceived comfort rating when subjects wearing different test base clothing分"

样本 整体不适感 热感觉 湿感觉 黏附感
运动 休息 运动 休息 运动 休息 运动 休息
S1 2.73±0.66 1.63±0.70 4.30±0.40 1.25±0.22 4.00±0.42 2.50±0.30 3.24±0.42 2.00±0.30
S2 3.58±0.58 1.89±0.27 4.33±0.41 1.41±0.20 3.81±0.34 2.61±0.26 3.20±0.37 2.21±0.26
S3 3.69±0.40 1.70±0.45 4.67±0.46 1.67±0.24 4.75±0.45 3.20±0.34 3.83±0.45 2.67±0.30
S4 3.17±0.37 1.67±0.38 4.56±0.55 1.57±0.36 4.06±0.39 3.00±0.35 3.47±0.40 2.41±0.28

表3

受到内穿服装显著影响的参数及最优组合"

指标 状态 最优 最差
皮温 运动 S1 S3
休息 S2 S3
心率 运动 S2 S3
皮肤电反应 运动 S1 S3
湿感觉 运动 S2 S3
休息 S1 S3

图8

评价指标层次分析图"

表4

运动和休息时各项参数的权重值"

状态 参数 复相关系数 权重/%
运动 皮温 0.99 24.34
心率 0.97 24.75
皮肤电反应 0.97 24.71
湿感觉 0.79 26.20
休息 皮温 0.90 21.91
心率 0.89 22.09
皮肤电反应 0.66 30.04
湿感觉 0.76 25.97
[1] BARR D, GREGSON W, REILLY T. The thermal ergonomics of firefighting reviewed[J]. Applied Ergonomics, 2010, 41(1): 161-172.
doi: 10.1016/j.apergo.2009.07.001 pmid: 19664755
[2] MCQUERRY M, BARKER R, DENHARTOG E. Relationship between novel design modifications and heat stress relief in structural firefighters' protective cloth-ing[J]. Applied Ergonomics, 2018, 70(3): 260-268.
doi: 10.1016/j.apergo.2018.03.004
[3] SHAID A, WANG L, PADHYE R. The thermal protection and comfort properties of aerogel and PCM-coated fabric for firefighter garment[J]. Journal of Industrial Textiles, 2016, 45(4): 611-625.
doi: 10.1177/1528083715610296
[4] BARR D, GREGSON W, REILLY T. The thermal ergonomics of firefighting reviewed[J]. Applied Ergonomics, 2010, 41(1): 161-172.
doi: 10.1016/j.apergo.2009.07.001 pmid: 19664755
[5] PETRUSIC S, ONOFREI E, BEDEK G, et al. Moisture management of underwear fabrics and linings of firefighter protective clothing assemblies[J]. Journal of The Textile Institute, 2015, 106(12): 1270-1281.
doi: 10.1080/00405000.2014.995457
[6] United States Department of Agriculture Forest Service. Tests of undergarments exposed to fire[EB/OL]. (2008-12-22)[2021-03-30]. https://www.fs.usda.gov/.
[7] CHOU C, UMEZAKI S, SON S, et al. Effects of wearing trousers or shorts under firefighting protective clothing on physiological and subjective responses[J]. Journal of the Human-Environment System, 2009, 12(2): 63-71.
doi: 10.1618/jhes.12.63
[8] MCLELLAN T M, SELKIRK G A. Heat stress while wearing long pants or shorts under firefighting protective clothing[J]. Ergonomics, 2004, 47(1): 75-90.
pmid: 14660219
[9] WANG Y, ZHANG Z, LI J, et al. Effects of inner and outer clothing combinations on firefighter ensembles' thermal-and moisture-related comfort levels[J]. Journal of The Textile Institute, 2013, 104(5): 530-540.
doi: 10.1080/00405000.2012.750030
[10] 江舒, 田苗, 李俊. 消防服的研究进展: 基于Web of Science数据库的CiteSpace分析[J]. 丝绸, 2019, 56(11): 36-45.
JIANG Shu, TIAN Miao, LI Jun. Research progress on firefighter's protective clothing: CiteSpace analysis based on Web of Science database[J]. Journal of Silk, 2019, 56(11): 36-45.
[11] MORAN D, PANDOLF K B. A physiological strain index (PSI) to evaluate heat stress: 6102128[J]. American Journal of Physiology, 1998, 275(2): 129-134.
[12] PARK J. The role of base-layer cooling conditions in human error occurrences during doffing of personal protective equipment in health care[J]. International Journal of Occupational Safety and Ergonomics, 2021, 12: 1-9.
[13] RAMANATHAN N L. A new weighting system for mean surface temperature of the human body[J]. Journal of Applied Physiology, 1964, 19: 531-533.
pmid: 14173555
[14] SMITH D L, ARENA L, DEBLOIS J P, et al. Effect of base layer materials on physiological and perceptual responses to exercise in personal protective equip-ment[J]. Applied Ergonomics, 2014, 45(3): 428-436.
doi: 10.1016/j.apergo.2013.06.001
[15] SMITH C J, HAVENITH G. Body mapping of sweating patterns in male athletes in mild exercise-induced hyperthermia[J]. European Journal of Applied Physiology, 2011, 111(7): 1391-1404.
doi: 10.1007/s00421-010-1744-8 pmid: 21153660
[16] 刘自远, 刘成福. 综合评价中指标权重系数确定方法探讨[J]. 中国卫生质量管理, 2006, 13(2): 44-48.
LIU Ziyuan, LIU Chengfu. Study on method of determining weight coefficient in comprehensive evaluation[J]. Chinese Health Quality Management, 2006, 13(2): 44-48.
[1] 张文欢, 李俊. 低热辐射环境中消防服系统内热传递机制的研究进展[J]. 纺织学报, 2021, 42(10): 190-198.
[2] 于志财, 刘金如, 何华玲, 马胜男, 姜会钰. 基于高分子水凝胶的阻燃织物研究与应用进展[J]. 纺织学报, 2021, 42(09): 180-186.
[3] 蒋璐璐, 邓梦, 王云仪, 李俊. 气凝胶材料在消防服中的应用研究进展[J]. 纺织学报, 2021, 42(09): 187-194.
[4] 王小波, 钱晓明, 王立晶, 刘永胜, 白赫. 液体冷却服研究进展及消防应用可行性研究[J]. 纺织学报, 2021, 42(06): 198-207.
[5] 胡贝贝, 杜菲菲, 李小辉. 消防服用隔热层孔型结构优化与测评[J]. 纺织学报, 2019, 40(11): 140-144.
[6] 刘林玉, 陈诚毅, 王珍玉, 祝焕, 金艳苹. 消防服多层织物的热湿舒适性[J]. 纺织学报, 2019, 40(05): 119-123.
[7] 苏云, 杨杰, 李睿, 宋国文, 李俊, 张向辉. 热辐射暴露下消防员的生理反应及皮肤烧伤预测[J]. 纺织学报, 2019, 40(02): 147-152.
[8] 翟胜男 陈太球 蒋春燕 傅佳佳 王鸿博. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(08): 100-104.
[9] 王丽君 卢业虎 王帅 马妮妮. 形状记忆合金尺寸对消防服面料防护性能的影响[J]. 纺织学报, 2018, 39(06): 113-118.
[10] 牛丽 钱晓明 范金土 张文欢 师云龙. 可降温式消防服的设计与降温效果评价[J]. 纺织学报, 2018, 39(06): 106-112.
[11] 邓梦 王云仪. 低辐射热暴露下消防服热防护性能测评方法研究进展[J]. 纺织学报, 2017, 38(12): 162-168.
[12] 王帅 卢业虎 王丽君 尤禅懿. 低辐射环境下形状记忆合金对防火面料隔热性能的影响[J]. 纺织学报, 2017, 38(08): 114-119.
[13] 何华玲 于志财 张健飞 宋国文. 含水率对消防服用多层织物系统热蓄积的影响[J]. 纺织学报, 2017, 38(08): 108-113.
[14] 赖军 张梦莹 张华 李俊. 消防服衣下空气层的作用与测定方法研究进展[J]. 纺织学报, 2017, 38(06): 151-156.
[15] 李利君 宋国文 李睿 王丽文 向春晖. 消防员防护服面料的热湿舒适性[J]. 纺织学报, 2017, 38(03): 122-125.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!