纺织学报 ›› 2023, Vol. 44 ›› Issue (02): 118-127.doi: 10.13475/j.fzxb.20211204510

• 纺织工程 • 上一篇    下一篇

高光洁处理对聚酰亚胺短纤纱及其织物性能的影响

缪莹1,2, 熊诗嫚1, 郑敏博3, 唐建东3, 张慧霞3, 丁彩玲4, 夏治刚1,2,5()   

  1. 1.武汉纺织大学 纺织科学与工程学院, 湖北 武汉 430200
    2.武汉纺织大学 省部共建纺织新材料与先进加工技术国家重点实验室, 湖北 武汉 430200
    3.际华三五四二纺织有限公司, 湖北 襄阳 441002
    4.山东如意科技集团有限公司, 山东 济宁 272073
    5.省部共建生物多糖纤维成形与生态纺织国家重点实验室, 山东 青岛 226071
  • 收稿日期:2021-12-20 修回日期:2022-11-21 出版日期:2023-02-15 发布日期:2023-03-07
  • 通讯作者: 夏治刚(1983—),男,教授,博士。主要研究方向为纤维集合体加工新技术及装备。E-mail:zhigang_xia1983@hotmail.com。
  • 作者简介:缪莹(1997—),女,硕士生。主要研究方向为纺织新材料。
  • 基金资助:
    省部共建生物多糖纤维成形与生态纺织国家重点实验室(青岛大学)开放课题项目(KF2020215);湖北省重点研发计划项目(2021BAD003)

Effect of high smooth treatment on polyimide staple yarns and its fabric properties

MIAO Ying1,2, XIONG Shiman1, ZHENG Minbo3, TANG Jiandong3, ZHANG Huixia3, DING Cailing4, XIA Zhigang1,2,5()   

  1. 1. School of Textile Science and Engineering, Wuhan Textile University, Wuhan, Hubei 430200, China
    2. State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan, Hubei 430200, China
    3. Jihua 3542 Textile Co., Ltd., Xiangyang, Hubei 441002, China
    4. Shandong Ruyi Technology Group Co., Ltd., Jining, Shandong 272073, China
    5. State Key Laboratory of Bio-Fibers and Eco-Textiles, Qingdao University, Qingdao, Shandong 226071, China
  • Received:2021-12-20 Revised:2022-11-21 Published:2023-02-15 Online:2023-03-07

摘要:

针对聚酰亚胺(PI)短纤维纺纱静电大、成纱毛羽多、后加工摩擦剧烈导致纱线品质大幅恶化的问题,创新提出了在后加工终端对多毛羽PI单纱进行高光洁处理的方法。通过研制纱线高光洁处理装置和理论模拟,分析了该装置引纱区与涡流包缠关键区的作用机制,应用装置的湿热涡流处理多毛羽PI单纱,并将处理前后的PI单纱实施倍捻和织造,获得PI股线及其织物。结果表明:与处理前相比,高光洁处理后的PI单纱有害毛羽去除率为97.69%、耐磨性提高48.84%,PI股线有害毛羽去除率为64.67%、耐磨性提高40.89%;处理后纱线所织造织物的柔软性、透气性、抗起毛起球性、抗静电性均得到改善。

关键词: 聚酰亚胺, 高光洁处理, 毛羽, 数值模拟, 纱线性能, 织物性能

Abstract:

Objective Polyimide (PI) has excellent stability and mechanical properties and is widely used in various industries. PI staple yarn shows good mechanical properties, flame retardancy, high-temperature resistance and other properties. However, PI staple yarn is difficult to spin creating high level of yarn hairiness, and the yarn also has serious problem of static electricity. PI yarn hair is long, causing hair entanglement, resulting in unclear shed openings and yarn breakage during weaving, and the PI fabric is easy to pilling negatively affect the fabric appearance. Because of the above problems, this paper proposes an innovative idea of high smooth treatment of hairy PI single yarn at the end of yarn post-processing to efficiently achieve the transformation of low-quality PI yarn to high-quality PI yarn.
Method Based on this idea, a high smooth and clean yarn processing device was developed, and the mechanism of the key area of yarn leading and eddy current wrapping was simulated and analyzed theoretically. The device applied the wet heat eddy current to treat the multi-hair PI single yarn, and the PI single yarn and its fabric were obtained by double-twisting and weaving before and after the processing.
Results A three-dimensional numerical simulation model for the ingot fluid region of the high smooth treatment device was established (Fig. 3). The simulation results of the yarn drawing stage (Fig. 4) showed that strong suction was generated in the device before the yarn entered the wrapping device to ensure the smooth entry of the yarn into the device. The simulation results of the normal high smooth and clean spinning stage (Fig. 5) showed that the turbulence phenomenon under normal treatment was more obvious than that in the yarn drawing stage. Due to the presence of backflow and high-speed airflow, the hairiness of the wooly yarn was greatly reduced and the strength was improved after the device treatment. Based on theoretical analysis, the yarn and fabric experiment results was analyzed before and after the treatment. The yarn test results showed that the high smooth treatment significantly improved the yarn's apparent quality and made the yarn surface more smoothly (Fig. 6), and the harmful hairiness number of PI single yarn after the high smooth treatment was reduced by 97.69% (Fig. 7). After the treatment, the dry unevenness of the strands was improved (Tab. 3), the yarn strength was increased by 5.50% (Tab. 4), and the wear resistance of the yarn was increased by 48.84% (Fig. 8). The test results of the fabric showed that the fabric woven by the treated yarn was softer, smoother, more elastic (Fig. 9), and more smooth (Fig. 10). The warp and weft tensile mechanical properties of the treated fabric were greater than that of the original fabric (Tab. 5), and the air permeability of the fabric was increased by 66.09% after the treatment (Fig. 11). The pilling performance was effectively improved (Fig. 12). After the treatment, the fabric static electricity voltage dropped by 40.0%, and the friction electrostatic performance was improved (Tab. 6).
Conclusion PI yarn is processed by a high smooth treatment device, and the properties of yarn and fabric are compared through the simulation analysis embedded in the device. During the yarn initial stage, the flow line develops orderly along the helical route of the device, which is conducive to the generation of suction and smooth yarn route. In comparison, during the conventional high smooth treatment stage, the high-speed airflow of the air jet hole drives the high-speed rotating airflow, which wraps and holds the yarn surface hairiness. After the high smooth treatment, the degree of yarn hairiness is significantly reduced, the tensile property is improved, the unevenness of a single yarn is increased, and the wear resistance of yarn is improved. The treated fabric is smoother in appearance, with improvement in softness, smoothness, elasticity, breathability, and antistatic performance.

Key words: polyimide, high smooth treatment, hairiness, numerical simulation, yarn property, fabric property

中图分类号: 

  • TS102

图1

涡流纺纱工艺流程"

图2

纱线高光洁处理立体示意图"

图3

模型内气流体区域的三维数值模拟计算模型"

图4

纺纱初始状态时的气流场模拟结果"

图5

高光洁处理时的气流场模拟结果"

图6

纱线表观结构测试结果"

表1

纱线不同长度毛羽数测试结果"

纱线
种类
不同长度的毛羽数/(根·(10 m)-1)
1 mm 2 mm 3 mm 4 mm 5 mm 6 mm 8 mm 10 mm
PI-YS 4 515.80±172.59 1 608.80±83.28 679.70±43.30 307.80±27.70 147.90±18.64 61.40±10.63 9.40±4.25 1.10±2.18
PI-CS 823.00±96.57 135.80±18.40 37.70±9.07 8.90±4.53 2.40±2.46 0.90±1.29
PI-YD 5 378.40±198.53 1 431.00±97.70 466.00±32.62 148.20±24.05 51.60±3.05 14.00±5.14 1.20±1.62 0.10±0.32
PI-CD 2 316.90±157.68 433.60±44.19 116.80±19.46 38.60±25.33 13.80±20.64 9.60±22.34 7.00±21.79 7.00±21.79

图7

纱线毛羽去除率"

表2

高光洁处理前后纱线毛羽计算结果"

纱线种类 毛羽总数/(根·(10 m)-1) 短毛羽数/(根·(10 m)-1) 有害毛羽数/(根·(10 m)-1) 短毛羽去除率/% 有害毛羽去除率/%
PI-YS 7 331.90±362.57 6 804.30±299.17 527.60±63.40 85.35 97.69
PI-CS 1 008.70±132.32 996.50±124.04 12.20±8.28
PI-YD 7 490.50±373.04 7 275.40±328.86 215.10±44.18 60.60 64.67
PI-CD 2 943.30±333.22 2 867.30±221.33 76.00±111.89

表3

纱线条干均匀度检测结果"

纱线
种类
不匀
率/%
CV值/
%
细节/
(个·km-1)
粗节/
(个·km-1)
棉结/
(粒·km-1)
-30% -50% +35% +50% +200%
PI-YS 13.28 17.01 3 485 150 765 100 395
PI-CS 13.25 16.90 3 895 150 720 130 755
PI-YD 9.14 11.52 490 60 30
PI-CD 9.70 12.25 820 160 70

表4

纱线力学性能测试结果"

纱线
种类
线密度
/tex
断裂强力 断裂伸长率 断裂功 断裂强度
平均值/
cN
CV值/
%
平均值/
%
CV值/
%
平均值/
(cN·cm)
CV值/
%
平均值/
(cN·tex-1)
CV值/
%
PI-YS 9.78 312.51 12.50 9.06 10.32 779.93 21.72 31.95 12.49
PI-CS 9.78 329.80 9.42 9.19 8.07 830.38 15.82 33.72 9.42
PI-YD 19.60 654.23 7.65 9.63 8.37 1 670.79 15.86 33.38 7.65
PI-CD 19.60 696.47 6.32 10.19 6.47 1 901.39 11.99 35.53 6.32

图8

纱线的耐磨性能"

图9

织物风格测试结果"

图10

织物表观结构测试结果"

表5

织物拉伸力学性能测试结果"

织物种类 弹性模
量/MPa
拉伸应
变/%
拉伸应
力/MPa
断裂强
力/N
PI-YZ 经向 202.75 28.85 13.62 142.20
纬向 185.58 27.28 2.83 90.79
PI-CZ 经向 201.46 21.71 16.43 146.19
纬向 203.90 25.68 4.50 104.74

图11

织物透气性测试结果"

图12

织物起毛起球测试结果及局部放大图"

表6

织物摩擦静电测试结果"

织物
种类
峰值电
压/V
衰减电
压/V
衰减时
间/s
电压下降百
分比/%
PI-YZ 467 348 60 25.5
PI-CZ 461 272 60 40.0
[1] 朱璇, 钱明球, 虞鑫海, 等. 聚酰亚胺及其纤维的研究与开发进展:Ⅰ[J]. 合成技术及应用, 2013, 28(1):15-20.
ZHU Xuan, QIAN Mingqiu, YU Xinhai, et al. The research and development progress in polyimides and its fiber:Ⅰ[J]. Synthetic Technology and Application, 2013, 28(1):15-20.
[2] LIAW Derjang, WANG Kungli, HUANG Yingchi, et al. Advanced polyimide materials: syntheses, physical properties and applications[J]. Progress in Polymer Science, 2012, 37(7):907-974.
doi: 10.1016/j.progpolymsci.2012.02.005
[3] 朱璇, 钱明球, 虞鑫海, 等. 聚酰亚胺及其纤维的研究与开发进展:Ⅱ[J]. 合成技术及应用, 2013, 28(2):24-29.
ZHU Xuan, QIAN Mingqiu, YU Xinhai, et al. The research and development progress in polyimides and its fiber:Ⅱ[J]. Synthetic Technology and Application, 2013, 28(2):24-29.
[4] TAKAHO Kaneda, TOSHIO Katsura, KANJI Nakagawa, et al. High-strength-high-modulus polyimide fibers: II:spinning and properties of fibers[J]. Journal of Applied Polymer Science, 1986, 32(1):3151-3176.
doi: 10.1002/app.1986.070320122
[5] IRWINBR S, SWEENY W. Polyimide fibers[J]. Journal of Polymer Science Part C: Polymer Symposia, 1967, 19(1):41-48.
doi: 10.1002/polc.5070190107
[6] 张清华, 陈大俊, 丁孟贤. 聚酰亚胺纤维[J]. 高分子通报, 2001(5): 66-73.
ZHANG Qinghua, CHEN Dajun, DING Mengxian. Polyimide fibers[J]. Polymer Bulletin, 2001(5):66-73.
[7] 潘涛, 江慧, 傅婷, 等. 聚酰亚胺纤维纺纱工艺研究与纱线性能分析[J]. 纺织器材, 2015, 42(4):22-26.
PAN Tao, JIANG Hui, FU Ting, et al. Analysis of polyimide fiber spinning technology and yarn proper-ties[J]. Textile Accessories, 2015, 42(4):22-26.
[8] 尹桂波, 刘梅城, 洪杰. 聚酰亚胺纤维纱线的开发及保暖性能研究[J]. 上海纺织科技, 2018, 46(6):55-59.
YIN Guibo, LIU Meicheng, HONG Jie. Development of polyimide fiber yarn and its warmth retention property[J]. Shanghai Textile Science & Technology, 2018, 46(6):55-59.
[9] MOMIR Nikolić, ZORAN Stjepanovič, FRANC Lesjak, et al. Compact spinning for improved quality of ring-spun yarns[J]. Fibres & Textiles in Eastern Europe, 2003, 4(43): 30-35.
[10] 赵博. 赛络纺复合纱的生产实践及工艺探讨[J]. 浙江纺织服装职业技术学院学报, 2017, 16(1):13-17.
ZHAO Bo. Production practice and process discussion of siro spun composite yarn[J]. Journal of Zhejiang Fashion Institute of Technology, 2017, 16(1):13-17.
[11] AN Xianglong, YU Chongwen. Dynamic model of sirospun process. part I: theoretical dynamic model[J]. Journal of The Textile Institute, 2009, 101(9): 805-811.
doi: 10.1080/00405000902945550
[12] 王晓梅, 柯勤飞. 气流纺纱[J]. 国外纺织技术, 2003(1):10.
WANG Xiaomei, KE Qinfei. Airflow spins yarns[J]. Textile Technology Overseas, 2003(1):10.
[13] 何春泉. 解读扭妥环纺[J]. 上海毛麻科技, 2010(2):12-14.
HE Chunquan. Interpreting twisted spinning[J]. Shanghai Wool & Jute Journal, 2010(2):12-14.
[14] 夏治刚. 湿热对纤维素纤维拉伸性能的影响及其在光洁成纱中的应用[D]. 上海: 东华大学, 2012:4-10.
XIA Zhigang. Mechanism of moisture and temperature influence on cellulose textile fibers' tensile properties and its application in smooth yarn production[D]. Shanghai: Donghua University, 2012:4-10.
[15] 方玉婷, 王士华, 郭涛, 等. 热拉伸条件对聚酰亚胺纤维结构和性能的影响[J]. 合成纤维, 2020, 49(9):17-21.
FANG Yuting, WANG Shihua, GUO Tao, et al. The effects of post hot-drawing on structure and properties of polyimide fiber[J]. Synthetic Fiber in China, 2020, 49(9):17-21.
[16] 闫琳琳, 邹专勇, 卫国, 等. 基于螺旋导引槽空心锭子的喷气涡流纺加捻腔流场模拟[J]. 纺织学报, 2018, 39(9):139-145.
YAN Linlin, ZOU Zhuanyong, WEI Guo, et al. Numerical simulation for twisting chamber of air jet vortex spinning based on hollow spindle with spiral guiding grooves[J]. Journal of Textile Research, 2018, 39(9):139-145.
[17] SHIN T H, LIOU W W, SHABBIR A, et al. A new k-ε eddy viscosity model for high reynolds number turbulent flows[J]. Computers & Fluids, 1995, 24(3): 227-238.
doi: 10.1016/0045-7930(94)00032-T
[18] 陈兵海. 旋转气流作用下纱线缠绕过程数值模拟及其实验验证[D]. 杭州: 浙江理工大学, 2018:26-37.
CHEN Binghai. Numerical simulation and experimental validation of yarn splicing under the role of rotating airflow[D]. Hangzhou: Zhejiang Sci-Tech University, 2018:26-37.
[19] 尚珊珊. 高速旋转气流/纤维耦合运动特性的数值模拟与实验研究[D]. 上海: 东华大学, 2019:18-49.
SHANG Shanshan. Numerical simulation and experimental study of high-speed rotating airflow/fiber coupling motion characteristics[D]. Shanghai: Donghua University, 2019:18-49.
[20] XIA Z, WANG X, YE W, et al. Experimental investigation on the effect of singeing on cotton yarn properties[J]. Textile Research Journal, 2009, 79(17):1610-1615.
doi: 10.1177/0040517508099389
[1] 张青青, 倪远, 汪军, 张玉泽, 江慧. 转轮集聚纺纱装置与工艺设计[J]. 纺织学报, 2023, 44(02): 83-89.
[2] 孙戬, 姜博艺, 张守京, 胡胜. 异纤分拣机剔除喷管结构参数对其性能的影响[J]. 纺织学报, 2022, 43(10): 169-175.
[3] 邓中民, 于东洋, 胡灏东, 李童, 柯薇. 纱线毛羽路径匹配追踪检测[J]. 纺织学报, 2022, 43(09): 101-106.
[4] 诸文旎, 徐润楠, 胡蝶飞, 姚菊明, MILITKY Jiri, KREMENAKOVA Dana, 祝国成. 基于随机算法的纤维材料过滤特性仿真分析[J]. 纺织学报, 2022, 43(09): 76-81.
[5] 邹专勇, 缪璐璐, 董正梅, 郑国全, 付娜. 喷气涡流纺工艺对粘胶/涤纶包芯纱性能的影响[J]. 纺织学报, 2022, 43(08): 27-33.
[6] 黄耀丽, 陆诚, 蒋金华, 陈南梁, 邵慧奇. 聚酰亚胺纤维增强聚二甲基硅氧烷柔性复合膜的热力学性能[J]. 纺织学报, 2022, 43(06): 22-28.
[7] 余玉坤, 孙玥, 侯珏, 刘正, 易洁伦. 单层服装间隙量的动态有限元模型构建与仿真[J]. 纺织学报, 2022, 43(04): 124-132.
[8] 刘宜胜, 周鑫磊, 刘丹丹. 气动折入边装置中纱线初始位置对折边效果的影响[J]. 纺织学报, 2022, 43(03): 168-175.
[9] 郭敏, 王静安, 郭明瑞, 高卫东. 基于毛羽图像检测的浆纱抗起毛性能评价[J]. 纺织学报, 2022, 43(03): 78-82.
[10] 董晗, 郑森森, 郭涛, 董杰, 赵昕, 王士华, 张清华. 高耐热聚酰亚胺纤维的制备及其性能[J]. 纺织学报, 2022, 43(02): 19-23.
[11] 闵小豹, 潘志娟. 生物质纤维/菠萝叶纤维多组分混纺纱线的品质与性能[J]. 纺织学报, 2022, 43(01): 74-79.
[12] 钱淼, 胡恒蝶, 向忠, 马成章, 胡旭东. 非均布热管换热器的流动及其传热性能[J]. 纺织学报, 2021, 42(12): 151-158.
[13] 周浩邦, 沈敏, 余联庆, 肖世超. 辅助喷嘴结构对喷气织机异形筘内合成流场特征的影响[J]. 纺织学报, 2021, 42(11): 166-172.
[14] 牟浩蕾, 解江, 裴惠, 冯振宇, 耿宏章. 芳纶织物及其包容环的弹道冲击与数值模拟[J]. 纺织学报, 2021, 42(11): 56-63.
[15] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95-100.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 曹建达;顾小军;殷联甫. 用BP神经网络预测棉织物的手感[J]. 纺织学报, 2003, 24(06): 35 -36 .
[2] 【作者单位】:中国纺织工程学会秘书处【分类号】:+【DOI】:cnki:ISSN:0-.0.00-0-0【正文快照】:  香港桑麻基金会设立的“桑麻纺织科技奖” 0 0 年提名推荐工作;在纺织方面院士;专家和有关单位的大力支持下;收到了 个单位 (人 )推荐的 位候选人的. 2003年桑麻纺织科技奖获奖名单[J]. 纺织学报, 2003, 24(06): 107 .
[3] 朱敏;周翔. 准分子激光对聚合物材料的表面改性处理[J]. 纺织学报, 2004, 25(01): 1 -9 .
[4] 黄立新. Optim纤维及产品的开发与应用[J]. 纺织学报, 2004, 25(02): 101 -102 .
[5] 张治国;尹红;陈志荣. 纤维前处理用精练助剂研究进展[J]. 纺织学报, 2004, 25(02): 105 -107 .
[6] 秦元春. 纺织工业发展方向初探[J]. 纺织学报, 2004, 25(02): 108 -110 .
[7] 高伟江;魏文斌. 纺织业发展的战略取向——从比较优势到竞争优势[J]. 纺织学报, 2004, 25(02): 111 -113 .
[8] 潘旭伟;顾新建;韩永生;程耀东. 面向协同的服装供应链快速反应机制研究[J]. 纺织学报, 2006, 27(1): 54 -57 .
[9] 钟智丽;王训该. 纳米纤维的应用前景[J]. 纺织学报, 2006, 27(1): 107 -110 .
[10] 罗军;费万春. 生丝中各层次茧丝数的概率分布[J]. 纺织学报, 2006, 27(2): 1 -4 .