纺织学报 ›› 2023, Vol. 44 ›› Issue (05): 93-101.doi: 10.13475/j.fzxb.20220100501

• 纺织工程 • 上一篇    下一篇

基于异构集成学习的棉纱纱疵定量分析方法

杨芸(), 孙通, 梁振宇, 彭广, 鲍劲松   

  1. 东华大学 机械工程学院, 上海 201620
  • 收稿日期:2022-01-04 修回日期:2022-04-17 出版日期:2023-05-15 发布日期:2023-06-09
  • 作者简介:杨芸(1990—),女,讲师,博士。主要研究方向为智能传感与检测方法、机器视觉等。E-mail: yun@dhu.edu.cn
  • 基金资助:
    国家自然科学基金项目(51807022);国家重点研发计划资助项目(2019YFB1706300)

Quantitative analysis method of cotton yarn defects based on heterogeneous ensemble learning

YANG Yun(), SUN Tong, LIANG Zhenyu, PENG Guang, BAO Jinsong   

  1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
  • Received:2022-01-04 Revised:2022-04-17 Published:2023-05-15 Online:2023-06-09

摘要:

为解决当前棉纱纱疵定量分析方法精度低、可靠性差的问题,提出一种基于异构集成学习的纱疵定量分析方法。首先,建立基于电容传感器的纱疵检测二维动态仿真模型,分析纱疵尺寸对纱疵信号的影响规律。其次,针对非平稳、非线性的纱疵信号难处理以及纱疵量化特征不明显的问题,采用时域分析方法,提取纱疵信号的时域参数作为纱疵定量分析特征,针对传统阈值和数值分析方法对纱疵定量精度低的问题,以支持向量机回归算法和径向基神经网络算法组成初级学习器,集成梯度提升决策树为元学习器,建立用于纱疵定量分析的异构集成学习算法模型。实验结果表明,本文方法比其它单模型回归拟合方法的检测准确率提升约10%,验证了本文方法对纱疵定量分析结果的可靠性。

关键词: 棉纱, 纱疵, 纱疵定量分析, 纱疵信号, 纱线质量, 异构集成学习算法

Abstract:

Objective Yarn defects are an important index to evaluate yarn quality, and it is necessary to classify the common yarn defects such as coarse yarn segment, thin yarn segment and neps in a more detailed way to achieve multilevel management of yarn quality. The key to yarn defect grading is how to quantitatively analyze the appearance geometric dimensions such as yarn defect length and diameter. Aiming at the problems of low accuracy and poor reliability of the current quantitative analysis methods for cotton yarn defects, a quantitative analysis method for cotton yarn defects based on heterogeneous integrated learning is proposed.

Methods A two-dimensional dynamic simulation model for yarn defect detection based on capacitance sensor was established to analyze the influence law of yarn defect size on its signal. Following that, the time domain analysis method was adopted to extract the time domain parameters of yarn defect signals as the quantitative analysis characteristics for yarn defects. Then, the support vector regression algorithm, radial basis function neural network algorithm and gradient boosting decision tree were used as primary and meta learners 'respectively' to establish a heterogeneous integrated learning algorithm model for quantitative analysis of yarn defects, which was verified by experiments finally.

Results Based on the capacitive sensor, the dynamic simulation modeling and analysis of yarn defect detection was carried out, and the comprehensive capacitive sensor detection circuit principle and dynamic simulation analysis results showed that the yarn defect length and yarn defect diameter were the key factors affecting the yarn defect signal change, among which the peak change of the yarn defect signal was affected by the superposition coupling of the yarn defect diameter and the yarn defect length, and the duration of the yarn defect signal peak was only affected by the yarn defect length. The results collected by the time domain analysis method showed that the time domain feature parameters of different levels of yarn defects deminstrated obvious differences, proving that the time domain feature parameters could be adopted to estimate the appearance geometry of yarn defects. However, the relationship between the time domain feature parameters and the appearance geometry of the yarn blemishes remained vague and nonlinear. Therefore, a network with strong nonlinear approximation capability was required to map the time domain parameters and the appearance geometry of yarn defects, namely the quantitative analysis algorithm of yarn defects based on heterogeneous integration learning. The root mean square error and mean absolute error of the yarn defect diameter test set were 0.002 1 and 0.001 2, and the root mean square error and mean absolute error of the yarn defect length test set were 0.002 6 and 0.001 4, which represents a greater improvement than other types of single-model algorithms, and the goodness of fit was close to 1.00, which fully demonstrates that the algorithm proposed in this paper has a better fitting effect on the yarn defect diameter and yarn defect length, and the model has stronger reliability.

Conclusion A quantitative analysis method of yarn defects based on heterogeneous ensemble learning is proposed. The method picked the yarn defects signal by capacitive sensor, combined the time domain characteristic parameter extraction algorithm and multi-model heterogeneous ensemble algorithm, and conducted quantitative analysis of non-stationary and nonlinear yarn defects signal. The experimental results confirmed that the yarn defect quantitative analysis model based on integration of heterogeneous learning can improve the appearance of yarn defects quantitative accuracy of geometry size with the method of optimal fitting R2 close to 1.00. Compared with the conventional single model algorithm, the accuracy is improved by 10%, indicating the new method has good generalization ability and stability. It provides a more effective quantitative analysis scheme for yarn defects detection system based on electrical signal.

Key words: cotton yarn, yarn defect, quantitative analysis of yarn defect, yarn defect signal, yarn quality, heterogeneous ensemble learning algorithm

中图分类号: 

  • TS111.9

图1

基于电容传感器的纱疵检测动态仿真模型"

图2

纱疵动态仿真分析结果"

图3

纱疵直径和长度对电荷量的影响"

图4

变压器式交流检测电路原理图"

图5

短粗节纱疵信号"

图6

长粗节纱疵信号"

表1

纱疵信号时域特征参数"

纱疵级别 长度/mm 直径/mm Xmax Xrms Xmin Lt S2 X ˉ
A2 8 0.569 1.28 0.23 -0.26 22 0.05 0.06
A3 8 0.602 1.48 0.28 -0.22 25 0.08 0.10
B2 12 0.593 1.34 0.26 -0.28 35 0.09 0.12
C3 20 0.647 1.60 0.35 -0.32 50 0.12 0.00
F 120 0.296 0.64 0.18 -0.18 145 0.03 0.05
H1 115 0.136 0.08 0.09 -0.31 138 0.01 -0.06

图7

基于异构集成的纱疵外观几何尺寸定量分析模型"

图8

纱疵外观几何尺寸定量分析方法框架"

图9

纱疵信号采集实验平台"

图10

纱线信号分割"

表2

纱疵外观几何尺寸定量分析时域特征参数"

组编号 纱疵类型 长度/mm 直径/mm Xmax Xrms Xmin Lt S2 X ˉ
1 棉结 8 0.569 1.28 0.23 -0.26 22 0.05 0.06
2 棉结 8 0.602 1.48 0.28 -0.22 25 0.08 0.1
3 短粗节 12 0.593 1.34 0.26 -0.28 35 0.09 0.12
200 短粗节 20 0.647 1.60 0.35 -0.32 50 0.12 0.00
201 短粗节 46 0.403 0.88 0.26 -0.40 90 0.07 0.01
599 长粗节 120 0.296 0.64 0.18 -0.18 145 0.03 0.05
600 长细节 115 0.136 0.08 0.09 -0.31 138 0.01 -0.06

图11

纱疵外观几何尺寸定量分析算法学习曲线"

图12

模型回归拟合效果分析"

表3

不同模型的回归性能对比"

模型 纱疵几何尺寸 R2 Xmae Xrmse 时间/s
本文方法 D 0.993 0.001 2 0.002 1 0.199 4
Ly 0.989 0.001 4 0.002 6 0.199 4
GBDT D 0.962 0.001 2 0.058 6 0.249 7
Ly 0.945 0.010 2 0.055 6 0.235 9
KNN D 0.924 0.009 6 0.041 5 0.009 9
Ly 0.902 0.068 9 0.379 6 0.009 8
XGBoost D 0.963 0.045 8 0.068 8 0.154 2
Ly 0.925 0.064 5 0.043 2 0.162 3
RBF D 0.936 0.005 2 0.078 9 0.101 9
Ly 0.922 0.052 3 0.081 2 0.102 3
SVR D 0.936 0.005 7 0.064 5 0.149 8
Ly 0.925 0.049 5 0.078 6 0.148 6
[1] 王充, 赵帆. 纱线疵点产生原因分析[J]. 棉纺织技术, 2016, 44(10):56-58.
WANG Chong, ZHAO Fan. Analysis on the cause of yarn defect[J]. Cotton Textile Technology, 2016, 44(10): 56-58.
[2] 玉红. 电子清纱器与成纱质量[J]. 黑龙江纺织, 2005(4):23-25.
YU Hong. Electronic yarn cleaner and yarn quality[J]. Heilongjiang Textile, 2005 (4):23-25.
[3] 黄小强. 一种智能清纱算法的研究与实现[D]. 杭州: 杭州电子科技大学, 2011:17-23.
HUANG Xiaoqiang. Research and implementation of an intelligent yarn clearing algorithm[D]. Hangzhou: Hangzhou Dianzi University, 2011: 17-23.
[4] PINTO J G, CARVALHO V, MONTEIRO J L, et al. Yarn-mass measurement with 1-mm-length samples[J]. IEEE Transactions on Industrial Electronics, 2007, 54(2): 1177-1183.
doi: 10.1109/TIE.2007.893051
[5] 盛国俊, 董永贵. 纱线质量光电信号的消噪处理和异常检测[J]. 清华大学学报(自然科学版), 2010, 50(2): 229-231.
SHENG Guojun, DONG Yonggui. Yarn quality photoelectric signal denoising and abnormal detec-tion[J]. Journal of Tsinghua University (Science & Technology), 2010, 50 (2):229-231.
[6] 李变变, 李忠健, 潘如如, 等. 纱线条干均匀性序列图像测量方法[J]. 纺织学报, 2016, 37(11):26-31.
LI Bianbian, LI Zhongjian, PAN Ruru, et al. Measurement of yarn evenness using sequence images[J]. Journal of Textile Research, 2016, 37 (11):26-31.
[7] KANDROODI M R, ARAABI B N, BASSIRI M M, et al. Estimation of depth and length of defects from magnetic flux leakage measurements:verification with simulations, experiments, and pigging data[J]. IEEE Transactions on Magnetics, 2017, 53(3):1-10.
[8] GE Yu, LIU Jinhai, ZHANG Huaguang, et al. An iterative stacking method for pipeline defect inversion with complex MFL signals[J]. IEEE Transactions on Instrumentation and Measurement, 2020, 69(6):3780-3788.
doi: 10.1109/TIM.19
[9] WANG Zhenwei, FEI Yuan, YE Pengxin, et al. Crack characterization in ferromagnetic steels by pulsed eddy current technique based on GA-BP neural network model[J]. Journal of Magnetism and Magnetic Materials, 2020:2-8.
[10] WOLPERT D H. Stacked generalization[J]. Neural Networks, 1992, 5(2): 241-259.
doi: 10.1016/S0893-6080(05)80023-1
[11] ALVES A. Stacking machine learning classifiers to identify higgs bosons at the LHC[J]. Journal of Instrumentation, 2017, 12(5):1-3.
[12] YANG Jiangji, LI Jiangqiang, SHEN Ruifang, et al. Exploiting ensemble learning for automatic cataract detection and grading[J]. Computer Methods and Programs in Biomedicine, 2016, 124: 45-57.
doi: 10.1016/j.cmpb.2015.10.007 pmid: 26563686
[13] 王佶宣, 邓斌, 王江. 基于经验模态分解与RBF神经网络的短期风功率预测[J]. 电力系统及其自动化学报, 2020, 32(11):109-115.
WANG Jixuan, DENG Bin, WANG Jiang. Short-term wind power prediction based on empirical mode decomposition and RBF neural network[J]. Power Systems and Automation, 2020, 32 (11):109-115.
[14] 周立俊, 黄腾, 王思捷, 等. 基于GA-SVR的地铁隧道沉降预测[J]. 地理空间信息, 2021, 19(3):115-117.
ZHOU Lijun, HUANG Teng, WANG Sijie, et al. Subway tunnel settlement prediction based on GA-SVR[J]. Geospatial Information, 2021, 19(3):115-117.
[15] KE G L, MENG Q, FINLEY T, et al. Lightgbm: a highly efficient gradient boosting decision tree[J]. Advances in Neural Information Processing Systems, 2017, 30(2): 3146-3154.
[16] FRIEDMAN J. Greedy function approximation: a gradient boosting machine[J]. Annals of Statistics, 2001, 29(5):1189-1232.
doi: 10.1214/aos/1013203450
[17] 孙通, 杨芸, 杨耀, 等. 基于时频特征学习的分步式纱疵检测方法[J]. 东华大学学报(自然科学版), 2022, 48(5):25-34.
SUN Tong, YANG Yun, YANG Yao, et al. Step-by-step yarn defect detection method based on time-frequency feature learning[J]. Journal of Donghua University(Natural Science), 2022, 48(5):25-34.
[1] 王雅倩, 万爱兰, 曾登. 棉/形状记忆氨纶纬编免烫衬衫面料制备及其性能评价[J]. 纺织学报, 2023, 44(05): 125-131.
[2] 张青青, 倪远, 汪军, 张玉泽, 江慧. 转轮集聚纺纱装置与工艺设计[J]. 纺织学报, 2023, 44(02): 83-89.
[3] 吴佳庆, 王迎, 郝新敏, 宫玉梅, 郭亚飞. 长丝喂入位置对赛络纺包芯纱结构与性能影响[J]. 纺织学报, 2021, 42(08): 64-70.
[4] 郭明华, 刘新金. 基于切断称重法的细纱机牵伸区内纤维变速点分布研究[J]. 纺织学报, 2021, 42(08): 71-75.
[5] 左亚君, 蔡赟, 王蕾, 高卫东. 纯棉纱线合股数对织物性能的影响[J]. 纺织学报, 2021, 42(04): 74-79.
[6] 李瑞卿, 王伟, 魏炳举, 周长文, 张淑桃. 应用环保型还原剂的硫化黑染色工艺[J]. 纺织学报, 2020, 41(08): 50-54.
[7] 丁永生, 代亚敏, 钟毅, 徐红, 毛志平, 张琳萍, 陈支泽. 棉纱线在活性染料皮克林乳液体系中的染色动力学[J]. 纺织学报, 2020, 41(07): 101-108.
[8] 张缓缓, 赵妍, 景军锋, 李鹏飞. 基于亚像素边缘检测的纱线条干均匀度测量[J]. 纺织学报, 2020, 41(05): 45-49.
[9] 查刘根, 谢春萍. 应用四层BP神经网络的棉纱成纱质量预测[J]. 纺织学报, 2019, 40(01): 52-56.
[10] 郭淑华 王建坤 钱晓明. 微波辅助羧甲基玉米淀粉的制备及其上浆性能[J]. 纺织学报, 2018, 39(12): 59-66.
[11] 刘春 谢春萍 苏旭中 刘新金. 假捻器在环锭细纱机上的应用效果及工艺优化[J]. 纺织学报, 2018, 39(07): 27-31.
[12] 张希文 武海良 沈艳琴 毛宁涛. 温湿度对涤/棉浆纱力学性能的影响[J]. 纺织学报, 2018, 39(06): 70-74.
[13] 张灵婕 缪旭红 万爱兰 蒋高明 陈方芳. 上浆前处理剂对经编用棉纱性能的影响[J]. 纺织学报, 2018, 39(04): 82-86.
[14] 张荣 冯志华 陆庆 陈晓明. 含纱疵纱线的气流引纬牵引特性分析[J]. 纺织学报, 2017, 38(11): 131-136.
[15] 万爱兰 缪旭红 张灵婕 王委委. 外衣用棉经编织物结构设计与生产工艺[J]. 纺织学报, 2017, 38(05): 53-57.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!