纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 64-71.doi: 10.13475/j.fzxb.20220100901

• 纺织工程 • 上一篇    下一篇

棉/不锈钢丝包芯纱针织电路制备及其导电稳定性能

王开, 王瑾, 牛丽, 陈超余, 马丕波()   

  1. 江南大学 针织技术教育部工程研究中心, 江苏 无锡 214122
  • 收稿日期:2022-01-06 修回日期:2022-03-18 出版日期:2023-07-15 发布日期:2023-08-10
  • 通讯作者: 马丕波(1984—),男,教授,博士。主要研究方向为纺织结构柔性材料。E-mail:mapibo@jiangnan.edu.cn
  • 作者简介:王开(2000—),女,硕士生。主要研究方向为智能纺织品。
  • 基金资助:
    江苏省自然科学基金项目(BK20221094);中国博士后科学基金项目(2022TQ0123)

Preparation and conductive stability of knitted circuit using cotton/stainless steel wire core-spun yarn

WANG Kai, WANG Jin, NIU Li, CHEN Chaoyu, MA Pibo()   

  1. Engineering Research Center for Knitting Technology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2022-01-06 Revised:2022-03-18 Published:2023-07-15 Online:2023-08-10

摘要:

为提高金属丝作为电路用导线的柔性及导电稳定性,将赛络纺技术与针织技术结合,制备了基于针织结构的柔性电路。通过探究不同纺纱参数及针织工艺的影响,对纱线强度、包覆性、柔性针织电路的电学与力学性能及导电稳定性进行了表征和分析。结果表明:以不锈钢丝为导电芯层、棉为绝缘外层制成的导电包芯纱,纱线强力与纱线细度呈正相关,强力相较于裸不锈钢丝可提升2倍,且编织性能优异;在针织电路中添加弹性锦纶/氨纶包覆纱以增强其在二维及三维平面的弹性回复性,证明所制备的针织电路均具有良好的导电稳定性;当三维曲面平均应变达到150%时,针织电路电阻变化率低于0.38%,且在20%应变下纵向循环拉伸5 000个周期,电阻变化率低于0.61%。通过导电包芯纱所制备的柔性针织电路可同时具备良好的拉伸回复性及导电稳定性,为全柔性智能可穿戴传感网络的建立提供了新思路。

关键词: 棉, 不锈钢丝, 赛络纺技术, 嵌花组织, 包芯纱, 柔性针织电路, 导电稳定性

Abstract:

Objective The development of intelligent wearable products has put forward new requirements for conductive circuit, in which high flexibility and outstanding adaptation to the human body are essential. Flexible textile circuit made with metal wire guarantees reliable electric conduction, but faces challenges in processibility, wearing comfort, safety and conductive stability. The purpose of this paper is to improve the flexibility and stability of textile circuit made from cotton/metal wire core yarns to establish a flexible wearable sensing network.

Method This paper proposed a flexible circuit based on knitting structure that integrates sirospun technology with knitting technology. By exploring different spinning parameters including stainless steel wire diameter, twist factor and draft ratio, siro core-spun yarns were prepared from stainless steel wire and cotton. The non-conductive part of flexible knitted circuit was fabricated with polyamide/spandex yarn as plating yarn and polyester yarn as ground yarn. The conductive part was integrated by intarsia knit with polyamide/spandex yarn as plating yarn and conductive core-spun yarn as ground yarn. Then, mechanical properties, electrical stability under various mechanical conditions and conductive durability of flexible knitting circuit were characterized and analyzed.

Results The yarn used stainless steel wire as core and cotton fibers as the sheath (Fig. 3). Research on spinning parameters showed that increase in stainless steel wire diameter, reduction in draft ratio and proper twist factor have positive effects to conductive core-spun yarn appearance (Tab. 3). Considering the exposed core length and strength of the yarn, the twist factor of 400, the draft ratio of 17.28 and the stainless steel wire diameter of 0.05 mm were selected as the final spinning parameters. The break strength of the prepared conductive core-spun yarn is about 7.6 times that of bare stainless steel wire, but the elongation at break decreases about 2.8-3.6 times (Fig. 4). It was confirmed that the resistance of the yarn was affected by the strain and the structure of core-spun yarns caused reduction in the resistance change rate compared to bare stainless steel wire (Fig. 5). The prepared conductive core-spun yarn can be knitted on the knitting machine, exhibiting good processibility. In order to increase elasticity of the knitted circuit, polyamide/spandex yarn was introduced as plating yarn under conductive core-spun yarn and polyester yarn which increases circuit breaking force, breaking strain and maximum resistance change rate (Tab. 4). The trend of resistance change rate of knitted circuit in extended state is similar to that of conductive core-spun yarn, but the resistance change value is smaller than that of core-spun yarn, attributing to knitted structure (Fig. 7). The knitted structure also offered the knitted circuit good transverse mechanical property, with the transverse resistance change rate of the knitted circuit below 0.38%, which is smaller than the longitudinal resistance change rate (Fig. 8). The electrical durability test showed a resistance change rate of 0.61% after 5 000 cycles of 20% longitudinal strain, confirming circuit with knitted substrate has good durability after repeated deformation (Fig. 10). When bursting test was carried out to simulate complex three-dimensional strains on the knitted circuit, the resistance change rate was lower than 0.38% when the mean strain was lower than 150%. The load was then concentrated on the conductive core-spun yarn, the resistance change rate increases linearly with mean strain after elongation took place in the yarn (Fig. 12).

Conclusion Sirospun technology was adopted to prepare core-spun yarn with stainless steel wire as the core and cotton as the sheath. The spinning parameters were determined based on better covering degree and higher yarn strength by exploring the influences of twist factor, draft ratio and stainless steel wire diameter on the performance of core-spun yarn. The prepared conductive core-spun yarn was found to have good processibility. The research on the conductive properties of knitted circuit with different conductive core-spun yarns and fabric specifications shows that the conductivity is related to fabric elasticity, stainless steel wire diameter and tensile direction. The resistance change rate of the fabricated circuit can be less than 0.31% indicating good conductive stability of the knitted circuit. Similar conductive stability was also observed in three-dimensional bursting test under 150% mean strain. The knitted circuit has good electrical durability and can maintain stable resistance during 5 000 cycles of longitudinal tensile tests with an average strain of 20%.

Key words: cotton, stainless steel wire, sirospun technology, intarsia structure, core-spun yarn, flexible knitted circuit, conductive stability

中图分类号: 

  • TS186.9

图1

赛络纺纱工艺示意图"

表1

导电包芯纱规格参数"

纱线编号 芯丝直径/mm 捻系数 牵伸倍数
1# 0.03 400 17.28
2# 0.04 400 17.28
3# 0.05 400 17.28
4# 0.05 400 17.00
5# 0.05 400 17.50
6# 0.05 394 17.28
7# 0.05 404 17.28
8# 0.05 410 17.28

图2

针织平针嵌花编织图"

表2

针织电路规格"

织物
编号
芯丝
直径/mm
包覆纱线
密度
(锦纶/氨纶)
横密/
(纵行·
(5 cm)-1)
纵密/
(横列·
(5 cm)-1)
T0 0.05 35.5 55.0
T1 0.05 22 dtex/78 dtex 36.0 60.0
T2 0.05 33 dtex/78 dtex 38.5 65.0
T3 0.05 44 dtex/78 dtex 39.0 70.0
T4 0.03 33 dtex/78 dtex 38.5 65.0
T5 0.04 33 dtex/78 dtex 38.5 65.0

图3

导电包芯纱表观形态"

表3

导电包芯纱的性能"

纱线
编号
捻度/
(捻·m-1)
露芯长度/
(mm·m-1)
断裂强度/
(cN·dtex-1)
断裂伸
长率/%
1# 436.60 109.00 1.75 7.39
2# 443.70 73.50 1.59 7.62
3# 447.30 63.40 1.57 7.89
4# 440.60 63.60 1.56 8.51
5# 441.30 85.90 1.58 8.47
6# 436.90 63.90 1.51 7.78
7# 455.30 71.20 1.59 8.38
8# 464.60 106.40 1.44 7.80

图4

导电包芯纱的伸长率-负荷曲线"

图5

不锈钢丝和导电包芯纱的应变-电阻变化率曲线"

表4

针织电路力学性能"

织物编号 弹性回复率/% 断裂应变/% 断裂强力/N
T0 40.90 166.83 370.02
T1 57.07 209.81 435.98
T2 62.18 256.60 500.83
T3 70.52 257.40 499.62
T4 60.81 245.48 445.75
T5 61.64 252.85 479.56

图6

针织电路实物图"

图7

针织电路电阻变化率"

图8

针织电路平面双向拉伸电学和力学性能"

图9

针织电路横向和纵向拉伸示意图"

图10

针织电路的耐用性"

图11

针织电路顶破性能测试"

图12

针织电路顶破性能和电学性能"

[1] 肖渊, 蒋龙, 陈兰, 等. 织物表面导电线路成形方法的研究进展[J]. 纺织导报, 2015(8): 92-95.
XIAO Yuan, JIANG Long, CHEN Lan, et al. Research progress on forming method of conductive circuits on fabric surface[J]. China Textile Leader, 2015(8): 92-95.
[2] HARDY D A, MONETA A, SAKALYTE V, et al. Engineering a costume for performance using illuminated LED-yarns[J]. Fibers, 2018, 6(2): 35-47.
doi: 10.3390/fib6020035
[3] 肖渊, 王盼, 张威, 等. 织物表面导电线路喷射打印起始端凸起形成过程研究[J]. 纺织学报, 2020, 41(12): 81-86.
XIAO Yuan, WANG Pan, ZHANG Wei, et al. Study on protrusion formation of the fabric surface conductive line[J]. Journal of Textile Research, 2020, 41(12): 81-86.
[4] 王航, 王冰心, 宁新, 等. 喷墨打印导电墨水及其智能电子纺织品研究进展[J]. 纺织学报, 2021, 42(6): 189-197.
WANG Hang, WANG Bingxin, NING Xin, et al. Research progress in conductive inks for inkjet printing and its application for intelligent electronic textiles[J]. Journal of Textile Research, 2021, 42(6): 189-197.
[5] LIU S, LIU Y P, LI L. The impact of different proportions of knitting elements on the resistive properties of conductive fabrics[J]. Textile Research Journal, 2019, 89(5): 881-890.
doi: 10.1177/0040517518758003
[6] AHN J, KIM S. Automated textile circuit generation using machine vision and embroidery technique[J]. Textile Research Journal, 2022, 92(11/12): 1977-1986.
doi: 10.1177/00405175221075062
[7] PARKOVA I, PARKOVS I, VILUMSONE A. Light-emitting textile display with floats for electronics covering[J]. International Journal of Clothing Science and Technology, 2015, 27(1): 34-46.
doi: 10.1108/IJCST-05-2013-0056
[8] LI Q, TAO X M. A stretchable knitted interconnect for three-dimensional curvilinear surfaces[J]. Textile Research Journal, 2011, 81(11): 1171-1182.
doi: 10.1177/0040517511399965
[9] LOW C W, HE C H, LIN J H. Manufacturing techniques and property evaluations of conductive elastic knits[J]. Journal of Industrial Textiles, 2019, 49(4): 503-533.
doi: 10.1177/1528083718791343
[10] GUAN X Y, XU B G, WU M J, et al. Breathable, washable and wearable woven-structured triboelectric nanogenerators utilizing electrospun nanofibers for biomechanical energy harvesting and self-powered sensing[J]. Nano Energy, 2021.DOI:10.1016/j.nanoen.2020.105549.
doi: 10.1016/j.nanoen.2020.105549
[11] 段永洁, 谢春萍, 王广斌, 等. 棉/不锈钢纱线针织物的电磁屏蔽性能研究[J]. 丝绸, 2016, 53(9): 9-14.
DUAN Yongjie, XIE Chunping, WANG Guangbin, et al. Study on electromagnetic shielding property of cotton/stainless steel yarn knitted fabrics[J]. Journal of Silk, 2016, 53(9): 9-14.
[12] 孔静. 玻纤长丝/棉环锭包芯纱纺纱工艺与纱线性能[D]. 西安: 西安工程大学, 2016: 12-14.
KONG Jing. Glass filament/spindle spinning process and yarn performance[D]. Xi'an: Xi'an Polytechnic University, 2016: 12-14.
[13] 张岩, 裴泽光, 陈革. 喷气涡流纺金属丝包芯纱的制备及其结构与性能[J]. 纺织学报, 2018, 39(5): 25-31.
ZHANG Yan, PEI Zeguang, CHEN Ge. Preparation and structure and performance of jet vortex spinning wire wrap yarn[J]. Journal of Textile Research, 2018, 39(5): 25-31.
[1] 郭玉秋, 钟毅, 徐红, 毛志平. 拼混活性染料染色多组分定量分析方法[J]. 纺织学报, 2023, 44(07): 141-150.
[2] 陈家辉, 梁跃耀, 陈妮, 房宽峻. 棉织物喷墨印花打印方式的调控及其应用[J]. 纺织学报, 2023, 44(07): 159-166.
[3] 谭家玲, 刘佳音, 于伟东, 殷允杰, 王潮霞. 基于SiO2微胶囊的多色谱温敏变色棉织物制备及其性能[J]. 纺织学报, 2023, 44(07): 167-174.
[4] 王伟, 吴嘉欣, 张晓云, 张传杰, 宫兆庆. 制浆用废旧棉织物的脱色性能及其机制[J]. 纺织学报, 2023, 44(07): 175-183.
[5] 张露杨, 宋海波, 孟晶, 殷兰君, 卢业虎. 棉纱布被保暖性能的影响因素[J]. 纺织学报, 2023, 44(07): 79-85.
[6] 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56.
[7] 付驰宇, 徐傲, 齐硕, 王凯, 缪莹, 尚路路, 夏治刚. 形状记忆合金复合纱线及其面料驱动性能[J]. 纺织学报, 2023, 44(06): 91-97.
[8] 苏旭中, 梁巧敏, 王汇锋, 张娣, 崔益怀. 棉/生物基弹性聚酯纤维混纺针织物的服用性能[J]. 纺织学报, 2023, 44(05): 119-124.
[9] 王雅倩, 万爱兰, 曾登. 棉/形状记忆氨纶纬编免烫衬衫面料制备及其性能评价[J]. 纺织学报, 2023, 44(05): 125-131.
[10] 胡安钟, 王成成, 钟子恒, 张丽平, 付少海. 氮化硼纳米片掺杂型快速响应温致变色织物的制备及其性能[J]. 纺织学报, 2023, 44(05): 164-170.
[11] 易菁源, 裴刘军, 朱赫, 张红娟, 王际平. 非水介质染色体系中分散染料对涤纶/棉混纺织物的沾色研究[J]. 纺织学报, 2023, 44(05): 29-37.
[12] 王小艳, 马子婷, 许长海. 基于高耐碱高耐氧漂分散染料的涤盖棉织物漂染一浴加工工艺[J]. 纺织学报, 2023, 44(05): 38-45.
[13] 李学良, 杜玉红, 任维佳, 左恒力. 基于近红外光谱和残差神经网络的异性纤维分类识别[J]. 纺织学报, 2023, 44(05): 84-92.
[14] 杨芸, 孙通, 梁振宇, 彭广, 鲍劲松. 基于异构集成学习的棉纱纱疵定量分析方法[J]. 纺织学报, 2023, 44(05): 93-101.
[15] 谢鹏浩, 李勇, 陈晓川, 汪军. 基于分形的棉条建模及其牵伸过程的仿真[J]. 纺织学报, 2023, 44(04): 55-62.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!