纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 15-21.doi: 10.13475/j.fzxb.20220101407
SHI Lei, ZHANG Linwei, LIU Ya, XIA Lei, ZHUANG Xupin()
摘要:
支撑体是分离膜的生成场所和力学支撑,对膜的结构和性能具有重要的影响。为得到结构性能优异的支撑体结构,利用湿法成网和热压固网技术,制备了含致密平滑层和力学支撑层的非对称结构湿法非织造材料,系统研究了纤维的组成对支撑体结构和性能的影响。结果表明:超细聚酯纤维的引入提高了支撑体的表面平滑度,减小了孔径,提高了分离膜的加工性同时提高了支撑体的孔隙率和结构参数;通过影响分离膜相分离成形过程,实现了对聚砜膜多孔结构的调控,使指状孔逐渐缩短变小,发展成圆形海绵状空腔结构。所制备的聚砜膜的水通量和蛋白截留率得到了一定程度的提高,为分离膜支撑体的研究提供了新的思路。
中图分类号:
[1] |
JIANG Z Y, CHU L Y, WU X M, et al. Membrane-based separation technologies: from polymeric materials to novel process: an outlook from China[J]. Reviews in Chemical Engineering, 2020, 36(1): 67-105.
doi: 10.1515/revce-2017-0066 |
[2] |
LIANG B, HE X, HOU J, et al. Membrane separation in organic liquid: technologies, achievements, and opportunities[J]. Advanced Materials, 2019, 31(45): 1806090.
doi: 10.1002/adma.201806090 |
[3] |
ISMAIL A F, PADAKI M, HILAL N, et al. Thin film composite membrane: recent development and future potential[J]. Desalination, 2015, 356: 140-148.
doi: 10.1016/j.desal.2014.10.042 |
[4] |
LEE J, WANG R, BAE T H. High-performance reverse osmosis membranes fabricated on highly porous microstructured supports[J]. Desalination, 2018, 436: 48-55.
doi: 10.1016/j.desal.2018.01.037 |
[5] | TERAMACHI M, MURASE K, SUMI T, et al. Hollow porous membrane and process for producing the same: US 102036741B[P].2019-11-26. |
[6] |
QIU C, SETIAWAN L, WANG R, et al. High performance flat sheet forward osmosis membrane with an NF-like selective layer on a woven fabric embedded substrate[J]. Desalination, 2012, 287:266-270.
doi: 10.1016/j.desal.2011.06.047 |
[7] | NISHI M, SWIMIKO N, KOMOTO A, et al. Porous support body, composite semi-permeable membrane, and spiral type separation membrane element: US 20170348645A1 [P]. 2017-12-07. |
[8] | 张渠平. 热轧涤纶湿法非织造材料及其对聚砜支撑膜的影响[D]. 天津: 天津工业大学, 2020:13-37. |
ZHANG Quping. Hot-pressed wet-laid PET nonwoven and its effect of polysulfone support membranes[D]. Tianjin: Tiangong University, 2020:13-37. | |
[9] | SOYAMA T, SAKADUMEN N, NEMOTO J, et al. Wet-laid nonwoven fabric for semipermeable membrane supporting body, method for producing said wet-laid nonwoven fabric, and method for identifying low-density defect of wet laid nonwoven fabric: JP 2010290-728A[P]. 2010-12-27. |
[10] | 于斌, 郭玉海, 申景山, 等. 双层湿法水刺分离膜支撑体及其制备方法:CN106823839A[P]. 2017-02-22. |
YU Bin, GUO Yuhai, SHEN Jingshan, et al. Double-layer wet hydroentanglement separation membrane support body and its preparation method: 1068238-39A[P]. 2017-02-22. | |
[11] | YOSHIDA M. Semipermeable membrane support: JP 2019180432A [P]. 2019-09-30. |
[12] | TOSHIHIKO S, JUNJI N, HISASHI H. Nonwoven fabric for semipermeable membrane support: US 2015174535[P]. 2015-6-25. |
[13] |
SHE Q, WEI J, MA N, et al. Fabrication and characterization of fabric-reinforced pressure retarded osmosis membranes for osmotic power harvesting[J]. Journal of Membrane Science, 2016, 504:75-88.
doi: 10.1016/j.memsci.2016.01.004 |
[14] |
XIA L, ZHANG Q, ZHUANG X, et al. Hot-pressed wet-laid polyethylene terephthalate nonwoven as support for separation membranes[J]. Polymers, 2019, 11(10):1547.
doi: 10.3390/polym11101547 |
[15] |
RAMON G Z, WONG M, HOEK E. Transport through composite membrane: part 1: is there an optimal support membrane?[J]. Journal of Membrane Science, 2012, 415/416:298-305.
doi: 10.1016/j.memsci.2012.05.013 |
[16] |
XU X, LIU Q N, ZHUANG X P, et al. Homogeneous composite nonwoven support for high temperature-resistant separation membranes[J]. Macromolecular Materials and Engineering, 2021, 306(3): 2000758.
doi: 10.1002/mame.202000758 |
[17] |
VANKELECOM I F J, MOERMANS B, VERSCHUEREN G, et al. Intrusion of PDMS top layers in porous supports[J]. Journal of Membrane Science, 1999, 158(1/2): 289-297.
doi: 10.1016/S0376-7388(99)00036-8 |
[18] |
CHEN H Z, XIAO Y C, CHUNG T S. Multi-layer composite hollow fiber membranes derived from poly(ethylene glycol) (PEG) containing hybrid materials for CO2/N2 separation[J]. Journal of Membrane Science, 2011, 381(1): 211-220.
doi: 10.1016/j.memsci.2011.07.023 |
[19] |
JIMENEZ-SOLOMON M F, GORGOJO P, MUNOZ-IBANEZ M, et al. Beneath the surface: influence of supports on thin film composite membranes by interfacial polymerization for organic solvent nanofiltration[J]. Journal of Membrane Science, 2013, 448: 102-113.
doi: 10.1016/j.memsci.2013.06.030 |
[20] |
SMOLDERS C A, REUVERS A J, BOOM R M, et al. Microstructures in phase-inversion membranes: part 1: formation of macrovoids[J]. Journal of Membrane Science, 1992, 73(2): 259-275.
doi: 10.1016/0376-7388(92)80134-6 |
[21] | COHEN C, TANNY G B, PRAGER S. Diffusion-controlled formation of porous structures in ternary polymer systems[J]. Journal of Polymer Science Part A Polymer Chemistry, 2010, 17(3):477-489. |
[1] | 俞琰, 王西朝, 张瑞云, 李蓉丽, 程隆棣. 云南野生火草纤维及其绒网的结构与性能[J]. 纺织学报, 2022, 43(04): 10-14. |
[2] | 朵永超, 钱晓明, 郭寻, 高龙飞, 白赫, 赵宝宝. 中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能[J]. 纺织学报, 2022, 43(02): 98-104. |
[3] | 高强, 王晓, 郭亚杰, 陈茹, 魏菊. 棉基Ti3C2Tx油水分离膜的制备及其性能[J]. 纺织学报, 2022, 43(01): 172-177. |
[4] | 赖星, 王纯, 肖长发, 王黎明, 辛斌杰. 芳香族聚酰胺分离膜制备方法及应用进展[J]. 纺织学报, 2021, 42(10): 172-179. |
[5] | 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87. |
[6] | 梅硕, 李金超, 卢士艳, 肖长发, 杨勇, 冯向伟. 高强度聚氯乙烯中空纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 16-20. |
[7] | 王亚停, 赵家琪, 王碧佳, 冯雪凌, 钱国春, 隋晓锋. 超细纤维合成革的染色与功能整理研究进展[J]. 纺织学报, 2020, 41(07): 188-196. |
[8] | 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/壳聚糖/Fe3O4超细纤维膜对酸性蓝MTR的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24. |
[9] | 张恒 甄琪 刘雍 张一风 刘让同 宋卫民. 仿生水平分支结构聚乙二醇/聚丙烯超细纤维制备及其液体水平扩散性能[J]. 纺织学报, 2018, 39(12): 18-23. |
[10] | 赵宝宝 钱晓明 钱幺 范金土 封严 朵永超. 水性聚氨酯机械发泡涂层的响应面法优化制备[J]. 纺织学报, 2018, 39(07): 95-099. |
[11] | 赵宝宝 钱幺 钱晓明 范金土 朵永超. 梯度结构双组分纺粘水刺非织造材料的制备及其性能[J]. 纺织学报, 2018, 39(05): 56-61. |
[12] | 刘凡 钱晓明 赵宝宝 钱幺 朵永超. 柔软处理对涤纶/锦纶6中空桔瓣型超细纤维非织造布性能的影响[J]. 纺织学报, 2018, 39(03): 114-119. |
[13] | 刘雷艮 林振锋 沈忠安 牛建涛. 静电纺多孔超细纤维膜的吸油性能[J]. 纺织学报, 2018, 39(02): 7-13. |
[14] | 张恒 甄琪 钱晓明 杨红英 申屠宝卿 张一风 刘让同. 聚酯/聚酰胺中空橘瓣型超细纤维非织造材料的孔径预测[J]. 纺织学报, 2018, 39(01): 56-61. |
[15] | 强涛涛 王杨阳 王乐智 郑永贵 张丰杰 郑书杰. 交联剂改性超细纤维合成革基布的性能[J]. 纺织学报, 2017, 38(09): 101-108. |
|