纺织学报 ›› 2022, Vol. 43 ›› Issue (06): 15-21.doi: 10.13475/j.fzxb.20220101407

• 高性能纺织结构柔性材料制备及应用 • 上一篇    下一篇

分离膜湿法非织造支撑体的结构设计与应用

石磊, 张琳炜, 刘亚, 夏磊, 庄旭品()   

  1. 天津工业大学 纺织科学与工程学院, 天津 300387
  • 收稿日期:2022-01-10 修回日期:2022-03-07 出版日期:2022-06-15 发布日期:2022-07-15
  • 通讯作者: 庄旭品
  • 作者简介:石磊(1985—),女,博士,讲师。主要研究方向为功能非织造材料。
  • 基金资助:
    国家重点研发计划项目(2016YFB0303300)

Structural design and application of wet-laid nonwovens for separating membrane support

SHI Lei, ZHANG Linwei, LIU Ya, XIA Lei, ZHUANG Xupin()   

  1. School of Textile Science and Engineering, Tiangong University, Tianjin 300387, China
  • Received:2022-01-10 Revised:2022-03-07 Published:2022-06-15 Online:2022-07-15
  • Contact: ZHUANG Xupin

摘要:

支撑体是分离膜的生成场所和力学支撑,对膜的结构和性能具有重要的影响。为得到结构性能优异的支撑体结构,利用湿法成网和热压固网技术,制备了含致密平滑层和力学支撑层的非对称结构湿法非织造材料,系统研究了纤维的组成对支撑体结构和性能的影响。结果表明:超细聚酯纤维的引入提高了支撑体的表面平滑度,减小了孔径,提高了分离膜的加工性同时提高了支撑体的孔隙率和结构参数;通过影响分离膜相分离成形过程,实现了对聚砜膜多孔结构的调控,使指状孔逐渐缩短变小,发展成圆形海绵状空腔结构。所制备的聚砜膜的水通量和蛋白截留率得到了一定程度的提高,为分离膜支撑体的研究提供了新的思路。

关键词: 分离膜, 支撑体, 湿法非织造材料, 非对称结构, 超细纤维

Abstract:

Fabric supports play an important role of the membrane forming, and have an significant influence on the structure and performance of the membrane. In order to obtain a support with the required structure, asymmetric structured wet-laid nonwoven fabrics containing dense and smooth layer and high-mechanical layer was prepared by using wet-laid process and hot-pressing technology for the systematic investigation on the influence of fiber composition on the structure and properties. The results show that the addition of ultra-fine fibers improves surface smoothness, reduces pore size, and improves the processability of the separation membrane. When the porosity and structural parameters of the support were increased, and the porous structure of polysulfone membranes was accordingly regulated by influencing the phase separation forming process of the separation membrane, with the finger-like pores gradually shorten to circular sponge-like cavity structure. The permeance and bovine serum albumi rejection of the polysulfone membranes were also improved, indicating a new research idea for the separation membrane supports.

Key words: separating membrane, support, wet-laid nonwoven fabric, asymmetric structure, ultra-fine fiber

中图分类号: 

  • TS174.8

图1

非对称支撑体设计思路"

图2

PET海岛纤维表面和截面形貌及碱减量后的超细PET纤维扫描电镜照片"

图3

非对称支撑体表面及横截面扫描电镜照片"

图4

非对称支撑体的结构和性能"

图5

聚砜超滤膜的扫描电镜照片及结构图"

图6

由不同支撑体制备的聚砜超滤膜的横截面的扫描电镜照片"

图7

由不同支撑体制备的聚砜超滤膜断裂强力和伸长率对比及水通量和蛋白截留率对比"

[1] JIANG Z Y, CHU L Y, WU X M, et al. Membrane-based separation technologies: from polymeric materials to novel process: an outlook from China[J]. Reviews in Chemical Engineering, 2020, 36(1): 67-105.
doi: 10.1515/revce-2017-0066
[2] LIANG B, HE X, HOU J, et al. Membrane separation in organic liquid: technologies, achievements, and opportunities[J]. Advanced Materials, 2019, 31(45): 1806090.
doi: 10.1002/adma.201806090
[3] ISMAIL A F, PADAKI M, HILAL N, et al. Thin film composite membrane: recent development and future potential[J]. Desalination, 2015, 356: 140-148.
doi: 10.1016/j.desal.2014.10.042
[4] LEE J, WANG R, BAE T H. High-performance reverse osmosis membranes fabricated on highly porous microstructured supports[J]. Desalination, 2018, 436: 48-55.
doi: 10.1016/j.desal.2018.01.037
[5] TERAMACHI M, MURASE K, SUMI T, et al. Hollow porous membrane and process for producing the same: US 102036741B[P].2019-11-26.
[6] QIU C, SETIAWAN L, WANG R, et al. High performance flat sheet forward osmosis membrane with an NF-like selective layer on a woven fabric embedded substrate[J]. Desalination, 2012, 287:266-270.
doi: 10.1016/j.desal.2011.06.047
[7] NISHI M, SWIMIKO N, KOMOTO A, et al. Porous support body, composite semi-permeable membrane, and spiral type separation membrane element: US 20170348645A1 [P]. 2017-12-07.
[8] 张渠平. 热轧涤纶湿法非织造材料及其对聚砜支撑膜的影响[D]. 天津: 天津工业大学, 2020:13-37.
ZHANG Quping. Hot-pressed wet-laid PET nonwoven and its effect of polysulfone support membranes[D]. Tianjin: Tiangong University, 2020:13-37.
[9] SOYAMA T, SAKADUMEN N, NEMOTO J, et al. Wet-laid nonwoven fabric for semipermeable membrane supporting body, method for producing said wet-laid nonwoven fabric, and method for identifying low-density defect of wet laid nonwoven fabric: JP 2010290-728A[P]. 2010-12-27.
[10] 于斌, 郭玉海, 申景山, 等. 双层湿法水刺分离膜支撑体及其制备方法:CN106823839A[P]. 2017-02-22.
YU Bin, GUO Yuhai, SHEN Jingshan, et al. Double-layer wet hydroentanglement separation membrane support body and its preparation method: 1068238-39A[P]. 2017-02-22.
[11] YOSHIDA M. Semipermeable membrane support: JP 2019180432A [P]. 2019-09-30.
[12] TOSHIHIKO S, JUNJI N, HISASHI H. Nonwoven fabric for semipermeable membrane support: US 2015174535[P]. 2015-6-25.
[13] SHE Q, WEI J, MA N, et al. Fabrication and characterization of fabric-reinforced pressure retarded osmosis membranes for osmotic power harvesting[J]. Journal of Membrane Science, 2016, 504:75-88.
doi: 10.1016/j.memsci.2016.01.004
[14] XIA L, ZHANG Q, ZHUANG X, et al. Hot-pressed wet-laid polyethylene terephthalate nonwoven as support for separation membranes[J]. Polymers, 2019, 11(10):1547.
doi: 10.3390/polym11101547
[15] RAMON G Z, WONG M, HOEK E. Transport through composite membrane: part 1: is there an optimal support membrane?[J]. Journal of Membrane Science, 2012, 415/416:298-305.
doi: 10.1016/j.memsci.2012.05.013
[16] XU X, LIU Q N, ZHUANG X P, et al. Homogeneous composite nonwoven support for high temperature-resistant separation membranes[J]. Macromolecular Materials and Engineering, 2021, 306(3): 2000758.
doi: 10.1002/mame.202000758
[17] VANKELECOM I F J, MOERMANS B, VERSCHUEREN G, et al. Intrusion of PDMS top layers in porous supports[J]. Journal of Membrane Science, 1999, 158(1/2): 289-297.
doi: 10.1016/S0376-7388(99)00036-8
[18] CHEN H Z, XIAO Y C, CHUNG T S. Multi-layer composite hollow fiber membranes derived from poly(ethylene glycol) (PEG) containing hybrid materials for CO2/N2 separation[J]. Journal of Membrane Science, 2011, 381(1): 211-220.
doi: 10.1016/j.memsci.2011.07.023
[19] JIMENEZ-SOLOMON M F, GORGOJO P, MUNOZ-IBANEZ M, et al. Beneath the surface: influence of supports on thin film composite membranes by interfacial polymerization for organic solvent nanofiltration[J]. Journal of Membrane Science, 2013, 448: 102-113.
doi: 10.1016/j.memsci.2013.06.030
[20] SMOLDERS C A, REUVERS A J, BOOM R M, et al. Microstructures in phase-inversion membranes: part 1: formation of macrovoids[J]. Journal of Membrane Science, 1992, 73(2): 259-275.
doi: 10.1016/0376-7388(92)80134-6
[21] COHEN C, TANNY G B, PRAGER S. Diffusion-controlled formation of porous structures in ternary polymer systems[J]. Journal of Polymer Science Part A Polymer Chemistry, 2010, 17(3):477-489.
[1] 俞琰, 王西朝, 张瑞云, 李蓉丽, 程隆棣. 云南野生火草纤维及其绒网的结构与性能[J]. 纺织学报, 2022, 43(04): 10-14.
[2] 朵永超, 钱晓明, 郭寻, 高龙飞, 白赫, 赵宝宝. 中空桔瓣型高收缩聚酯/聚酰胺6超细纤维非织造布的制备及其性能[J]. 纺织学报, 2022, 43(02): 98-104.
[3] 高强, 王晓, 郭亚杰, 陈茹, 魏菊. 棉基Ti3C2Tx油水分离膜的制备及其性能[J]. 纺织学报, 2022, 43(01): 172-177.
[4] 赖星, 王纯, 肖长发, 王黎明, 辛斌杰. 芳香族聚酰胺分离膜制备方法及应用进展[J]. 纺织学报, 2021, 42(10): 172-179.
[5] 朵永超, 钱晓明, 赵宝宝, 钱幺, 邹志伟. 超细纤维合成革基布的制备及其性能[J]. 纺织学报, 2020, 41(09): 81-87.
[6] 梅硕, 李金超, 卢士艳, 肖长发, 杨勇, 冯向伟. 高强度聚氯乙烯中空纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(09): 16-20.
[7] 王亚停, 赵家琪, 王碧佳, 冯雪凌, 钱国春, 隋晓锋. 超细纤维合成革的染色与功能整理研究进展[J]. 纺织学报, 2020, 41(07): 188-196.
[8] 刘雷艮, 沈忠安, 林振锋, 陶金. 聚乳酸/壳聚糖/Fe3O4超细纤维膜对酸性蓝MTR的吸附性能及机制[J]. 纺织学报, 2020, 41(05): 20-24.
[9] 张恒 甄琪 刘雍 张一风 刘让同 宋卫民. 仿生水平分支结构聚乙二醇/聚丙烯超细纤维制备及其液体水平扩散性能[J]. 纺织学报, 2018, 39(12): 18-23.
[10] 赵宝宝 钱晓明 钱幺 范金土 封严 朵永超. 水性聚氨酯机械发泡涂层的响应面法优化制备[J]. 纺织学报, 2018, 39(07): 95-099.
[11] 赵宝宝 钱幺 钱晓明 范金土 朵永超. 梯度结构双组分纺粘水刺非织造材料的制备及其性能[J]. 纺织学报, 2018, 39(05): 56-61.
[12] 刘凡 钱晓明 赵宝宝 钱幺 朵永超. 柔软处理对涤纶/锦纶6中空桔瓣型超细纤维非织造布性能的影响[J]. 纺织学报, 2018, 39(03): 114-119.
[13] 刘雷艮 林振锋 沈忠安 牛建涛. 静电纺多孔超细纤维膜的吸油性能[J]. 纺织学报, 2018, 39(02): 7-13.
[14] 张恒 甄琪 钱晓明 杨红英 申屠宝卿 张一风 刘让同. 聚酯/聚酰胺中空橘瓣型超细纤维非织造材料的孔径预测[J]. 纺织学报, 2018, 39(01): 56-61.
[15] 强涛涛 王杨阳 王乐智 郑永贵 张丰杰 郑书杰. 交联剂改性超细纤维合成革基布的性能[J]. 纺织学报, 2017, 38(09): 101-108.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!