纺织学报 ›› 2022, Vol. 43 ›› Issue (04): 1-9.doi: 10.13475/j.fzxb.20220102509
• 特约论文 • 下一篇
孔维庆1, 胡述锋1,2, 俞森龙1, 周哲1, 朱美芳1()
KONG Weiqing1, HU Shufeng1,2, YU Senlong1, ZHOU Zhe1, ZHU Meifang1()
摘要:
木材独特的多层级结构、优异的各向异性结构、良好的力学性能和微纳米通道,赋予其一系列非凡的性能,为功能材料的设计提供了更多可能。为提高木质纤维素资源的利用率和高值化转化,基于木质纤维素自身结构和理化性能,概述了木质纤维素在系列功能材料领域的发展,总结了结构设计及调控对木质纤维素功能材料性能的影响,综述了其在结构调控材料、生物降解塑料、纳米流体材料、仿生生物材料及再生纤维素纤维方面的研究进展,指出其所面临的挑战以及未来发展方向,以期为木质纤维素的高值化转化和拓展其现代化应用提供理论参考。
中图分类号:
[1] |
KONG W Q, CHEN C J, CHEN G G, et al. Wood ionic cable[J]. Small, 2021. DOI: 10.1002/smll.202008200.
doi: 10.1002/smll.202008200 |
[2] |
TROVATTI E, TANG H, HAJIAN A, et al. Enhancing strength and toughness of cellulose nanofibril network structures with an adhesive peptide[J]. Carbohydrate Polymers, 2018, 181:256-263.
doi: 10.1016/j.carbpol.2017.10.073 |
[3] |
ISOGAI A. Development of completely dispersed cellulose nanofibers[J]. Proceedings of the Japan Academy Series B, 2018, 94 (4):161-179.
doi: 10.2183/pjab.94.012 |
[4] |
LI T, CHEN C J, BROZENA A H, et al. Developing fibrillated cellulose as a sustainable technological material[J]. Nature, 2021, 590 (7844):47-56.
doi: 10.1038/s41586-020-03167-7 |
[5] |
WANG L H, FU Q X, YU J Y, et al. Cellulose nanofibrous membranes modified with phenyl glycidyl ether for efficient adsorption of bovine serum albumin[J]. Advanced Fiber Materials, 2019, 1 (3):188-196.
doi: 10.1007/s42765-019-00010-1 |
[6] |
ZHU H L, ZHU S Z, JIA Z, et al. Anomalous scaling law of strength and toughness of cellulose nanopaper[J]. Proceedings of the National Academy of Sciences, 2015, 112 (29):8971-8976.
doi: 10.1073/pnas.1502870112 |
[7] |
MEYERS M A, MCKITTRICK J, CHEN P Y. Structural biological materials: critical mechanics-materials connections[J]. Science, 2013, 339 (6121):773-779.
doi: 10.1126/science.1220854 |
[8] |
PODSIADLO P, KAUSHIK A K, ARRUDA E M, et al. Ultrastrong and stiff layered polymer nano-composites[J]. Science, 2007, 318 (5847):80-83.
doi: 10.1126/science.1143176 |
[9] |
STURCOVÁ A, DAVIES G R, EICHHORN S J. Elastic modulus and stress-transfer properties of tunicate cellulose whiskers[J]. Biomacromolecules, 2005, 6(2): 1055-1061.
doi: 10.1021/bm049291k |
[10] | MARK R E. Cell wall mechanics of tracheids[J]. Quarterly Review of Biology, 1969, 44(2):230. |
[11] |
SONG J W, CHEN C J, ZHU S Z, et al. Processing bulk natural wood into a high-performance structural material[J]. Nature, 2018, 554 (7691):224-228.
doi: 10.1038/nature25476 |
[12] |
CHEN B, LEISTE U H, FOURNEY W L, et al. Hardened wood as a renewable alternative to steel and plastic[J]. Matter, 2021, 4(12):3941-3952.
doi: 10.1016/j.matt.2021.09.020 |
[13] |
SAITO T, KURAMAE R, WOHLERT J, et al. An ultrastrong nanofibrillar biomaterial: the strength of single cellulose nanofibrils revealed via sonication-induced fragmentation[J]. Biomacromolecules, 2013, 14(1): 248-253.
doi: 10.1021/bm301674e |
[14] |
XIAO S L, CHEN C J, XIA Q Q, et al. Lightweight, strong, moldable wood via cell wall engineering as a sustainable structural material[J]. Science, 2021, 374(6566):465-471.
doi: 10.1126/science.abg9556 |
[15] |
LI T, ZHAI Y, HE S M, et al. A radiative cooling structural material[J]. Science, 2019, 364(6442): 760-763.
doi: 10.1126/science.aau9101 |
[16] |
COUGHLAN M P. Mechanisms of cellulose degradation by fungi and bacteria[J]. Animal Feed Science and Technology, 1991, 32(1-3):77-100.
doi: 10.1016/0377-8401(91)90012-H |
[17] |
ALBERTSSON A C, HAKKARAINEN M. Designed to degrade[J]. Science, 2017, 358 (6365):872-873.
doi: 10.1126/science.aap8115 |
[18] |
WANG X Z, PANG Z Q, CHEN C J, et al. All-natural, degradable, rolled-up straws based on cellulose micro- and nano-hybrid fibers[J]. Advanced Functional Materials, 2020, 30 (22):1910417.
doi: 10.1002/adfm.201910417 |
[19] |
LIU C, LUAN P C, LI Q, et al. Biodegradable, hygienic, and compostable tableware from hybrid sugarcane and bamboo fibers as plastic alternative[J]. Matter, 2020, 3(6): 2066-2079.
doi: 10.1016/j.matt.2020.10.004 |
[20] |
XIA Q Q, CHEN C J, YAO Y G, et al. A strong, biodegradable and recyclable lignocellulosic bioplastic[J]. Nature Sustainability, 2021, 4 (7):627-635.
doi: 10.1038/s41893-021-00702-w |
[21] |
KIM S J, KO S H, KANG K H, et al. Direct seawater desalination by ion concentration polarization[J]. Nature Nanotechnology, 2010, 5 (4):297.
doi: 10.1038/nnano.2010.34 |
[22] |
ABRAHAM J, VASU K S, WILLIAMS C D, et al. Tunable sieving of ions using graphene oxide mem-branes[J]. Nature Nanotechnology, 2017, 12 (6):546-550.
doi: 10.1038/nnano.2017.21 |
[23] |
FENG J, GRAF M, LIU K, et al. Single-layer MoS2 nanopores as nanopower generators[J]. Nature, 2016, 536:197-200.
doi: 10.1038/nature18593 |
[24] |
AN N, FLEMING A M, WHITE H S, et al. Crown ether-electrolyte interactions permit nanopore detection of individual DNA abasic sites in single molecules[J]. Proceedings of the National Academy of Sciences, 2012, 109 (29):11504-11509.
doi: 10.1073/pnas.1201669109 |
[25] |
YANG C, WU Q, XIE W, et al. Copper-coordinated cellulose ion conductors for solid-state batteries[J]. Nature, 2021, 598 (7882):590-596.
doi: 10.1038/s41586-021-03885-6 |
[26] |
XIONG J, CHEN Q, EDWARDS M A, et al. Ion transport within high electric fields in nanogap electrochemical cells[J]. ACS Nano, 2015, 9 (8):8520-8529.
doi: 10.1021/acsnano.5b03522 |
[27] |
LI T, LI S X, KONG W, et al. A nanofluidic ion regulation membrane with aligned cellulose nano-fibers[J]. Science Advances, 2019. DOI: 10.1126/sciadv.aau4238.
doi: 10.1126/sciadv.aau4238 |
[28] |
KONG W, CHEN C, CHEN G, et al. Wood ionic cable[J]. Small, 2021, 17 (40):2008200.
doi: 10.1002/smll.202008200 |
[29] |
CHEN G, LI T, CHEN C, et al. A highly conductive cationic wood membrane[J]. Advanced Functional Materials, 2019, 29 (44):1902772.
doi: 10.1002/adfm.201902772 |
[30] |
WU Q Y, WANG C, WANG R, et al. Salinity-gradient power generation with ionized wood membranes[J]. Advanced Energy Materials, 2019, 10 (1):1902590.
doi: 10.1002/aenm.201902590 |
[31] |
AIZENBER J, FRATZL P. Biological and biomimetic materials[J]. Advanced Materials, 2010, 21 (4):387-388.
doi: 10.1002/adma.200803699 |
[32] |
HAQUE M A, KUROKAWA T, GONG J P. Anisotropic hydrogel based on bilayers: color, strength, toughness, and fatigue resistance[J]. Soft Matter, 2012, 8(31):8008-8016.
doi: 10.1039/c2sm25670c |
[33] |
YE S, MA C, PENG L, et al. Conductive "smart" hybrid hydrogels with PNIPAM and nanostructured conductive polymers[J]. Advanced Functional Materials, 2015, 25(8): 1219-1225.
doi: 10.1002/adfm.201404247 |
[34] |
YANG F, ZHAO J, KOSHUT W J, et al. A synthetic hydrogel composite with the mechanical behavior and durability of cartilage[J]. Advanced Functional Materials, 2020, 30:2003451.
doi: 10.1002/adfm.202003451 |
[35] |
SHI W, SUN M, HU X, et al. Structurally and functionally optimized silk-fibroin-gelatin scaffold using 3D printing to repair cartilage injury in vitro and in vivo[J]. Advanced Materials, 2017, 29 (29):1701089.
doi: 10.1002/adma.201701089 |
[36] |
YE D, YANG P, LEI X, et al. Robust anisotropic cellulose hydrogels fabricated via strong self-aggregation forces for cardiomyocytes unidirectional growth[J]. Chemistry of Materials, 2018, 30 (15):5175-5183.
doi: 10.1021/acs.chemmater.8b01799 |
[37] |
KONG W, WANG C, JIA C, et al. Muscle-inspired highly anisotropic, strong, ion-conductive hydrogels[J]. Advanced Materials, 2018, 30 (39):1801934.
doi: 10.1002/adma.201801934 |
[38] |
CHEN C, WANG Y, ZHOU T, et al. Toward strong and tough wood-based hydrogels for sensors[J]. Biomacromolecules, 2021, 22 (12):5204-5213.
doi: 10.1021/acs.biomac.1c01141 |
[39] |
CHEN G, LI T, CHEN C, et al. Scalable wood hydrogel membrane with nanoscale channels[J]. ACS Nano, 2021, 15 (7):11244-11252.
doi: 10.1021/acsnano.0c10117 |
[40] | WANG X, FANG J, ZHU W, et al. Bioinspired highly anisotropic, ultrastrong and stiff, and osteoconductive mineralized wood hydrogel composites for bone repair[J]. Advanced Functional Materials, 2021, 31:1-10. |
[41] |
STEPAN A M, MICHUD A, HELLSTEN S, et al. Ioncell-P & F: pulp fractionation and fiber spinning with ionicliquids[J]. Industrial & Engineering Chemistry Research, 2016. DOI: 10.1021/acs.iecr.6b00071.
doi: 10.1021/acs.iecr.6b00071 |
[42] |
VEHVIANNA M, KAMPPURI T, ROM M, et al. Effect of wet spinning parameters on the properties of novel cellulosic fibres[J]. Cellulose, 2008, 15: 671-680.
doi: 10.1007/s10570-008-9219-3 |
[43] |
JIA C, CHEN C J, KUANG Y D, et al. From wood to textiles: top-down assembly of aligned cellulose nanofibers[J]. Advanced Materials, 2018, 30(30): 1801347.
doi: 10.1002/adma.201801347 |
[1] | 李兴兴, 李琴, 岳甜甜, 刘宇清. 微纳米纤维素材料的微流控制备技术研究进展[J]. 纺织学报, 2022, 43(04): 180-186. |
[2] | 乔燕莎, 毛迎, 徐丹瑶, 李彦, 李绍杰, 王璐, 唐健雄. 用于应对疝修补术后并发症的经编补片研究进展[J]. 纺织学报, 2022, 43(03): 1-7. |
[3] | 金耀峰, 刘雷艮, 王薇, 陆鑫. 纳米纤维素室温诱导下的金红石型纳米二氧化钛制备及其紫外线屏蔽性能[J]. 纺织学报, 2022, 43(02): 176-182. |
[4] | 吴嘉茵, 王汉琛, 黄彪, 卢麒麟. 氯离子响应性纳米纤维素荧光水凝胶的构筑[J]. 纺织学报, 2022, 43(02): 44-52. |
[5] | 徐英俊, 王芳, 倪延朋, 陈琳, 宋飞, 王玉忠. 纺织品的阻燃及多功能化研究进展[J]. 纺织学报, 2022, 43(02): 1-9. |
[6] | 汪少朋, 吴宝宅, 何洲. 废旧纺织品回收与资源化再生利用技术进展[J]. 纺织学报, 2021, 42(08): 34-40. |
[7] | 杜欢政, 陆莎, 孙荐, 康乾. 生活源废旧纺织品高值化回收再利用体系的构建研究[J]. 纺织学报, 2021, 42(06): 1-7. |
[8] | 张蓓蕾, 沈明武, 史向阳. 静电纺短纤维的制备及其生物医学应用[J]. 纺织学报, 2021, 42(05): 1-8. |
[9] | 胡静, 张开威, 李冉冉, 林金友, 刘宇清. 亚麻分层纳米纤维素的制备及其增强热电复合材料性能[J]. 纺织学报, 2021, 42(02): 47-52. |
[10] | 卢琳娜, 李永贵, 卢麒麟. 一锅法合成氨基化纳米纤维素及其性能表征[J]. 纺织学报, 2020, 41(10): 14-19. |
[11] | 王世贤, 降帅, 李萌萌, 刘丽芳, 张丽. 硅烷偶联剂改性纳米纤维素气凝胶的制备及其表征[J]. 纺织学报, 2020, 41(03): 33-38. |
[12] | 王华平 姚勇波 夏晓林 张玉梅 . 离子液体新介质在高值化纤维素纤维中的应用[J]. 纺织学报, 2014, 35(2): 133-0. |
[13] | 赵晓, 沙盈, 安妮, 梁列峰. 基于细乳液聚合法的纳米胶囊及纳米色素制备[J]. 纺织学报, 2012, 33(7): 69-74. |
[14] | 王承轩. 色织面料新品开发之途径[J]. 纺织学报, 2001, 22(05): 34-36. |
|