纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 154-164.doi: 10.13475/j.fzxb.20220105911

• 服装工程 • 上一篇    下一篇

基于柔性选择性激光烧结3D打印技术的服装研发

顾力文1, 阮艳雯2(), 李浩3   

  1. 1.东华大学 上海国际时尚创意学院, 上海 200051
    2.上海工程技术大学 纺织服装学院,上海 201602
    3.东华大学 服装与艺术设计学院, 上海 200051
  • 收稿日期:2022-01-25 修回日期:2022-11-01 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 阮艳雯(1987—),女,讲师,博士。主要研究方向为数字时尚消费行为。E-mail:ywruan@sues.edu.cn
  • 作者简介:顾力文(1987—),男,讲师,博士。主要研究方向为数字化服装设计。
  • 基金资助:
    上海市艺术科学规划项目(YB2020F06);中国博士后科学基金面上项目(2021M700794)

Clothing development based on flexible selective laser sintering 3D printing technology

GU Liwen1, RUAN Yanwen2(), LI Hao3   

  1. 1. Shanghai International College of Fashion and Innovation, Donghua University, Shanghai 200051, China
    2. School of Textiles and Fashion, Shanghai University of Engineering Science, Shanghai 201602, China
    3. College of Fashion and Design, Donghua University, Shanghai 200051, China
  • Received:2022-01-25 Revised:2022-11-01 Published:2023-04-15 Online:2023-05-12

摘要:

为在服装3D打印领域充分发挥选择性激光烧结(SLS)工艺和热塑性聚氨酯(TPU)材料的组合运用在复杂三维结构成形和材料柔性调节方面的优势,对此技术路径开展了个案剖析与共性问题相结合的实证研究。首先,运用SLS工艺和TPU材料开发具有实穿性的柔性3D打印胸衣;随后,系统梳理并详尽描述了此个案的开发流程,从中提炼出基于SLS工艺、TPU材料和薄壁结构的3D打印服装通用开发流程。最终,针对此个案开发流程中的普适性关键问题提出相应解决方案。研究表明:针对柔性薄壁结构3D打印服装,三维数字模型初始形态、TPU材料硬度与模型壁厚间的配合都会对其打印成形后的可变柔性造型产生较大影响;同时也验证了将缝纫工艺用于服装3D打印模型拼接的可行性。

关键词: 服装, 3D打印, 增材制造, 热塑性聚氨酯, 选择性激光烧结, 薄壁结构

Abstract:

Objective Flexible and complex 3-D structure forming is one of the main difficulties of concern in the field of clothing 3D printing technology. The selective laser sintering (SLS) process and thermoplastic polyurethane (TPU) materials have obvious advantages in addressing this difficulty. However, there is a lack of more systematic research on the 3D printing clothing development process based on this technology combination. This study carry out an empirical research which combines case studies and summaries of universal problems to address this issue.
Method As the initial attempt, a digital model of a 3D printed corset was designed and generated by comprehensive usage of the soft-ware including DAZ 3D, Blender, CLO and Materialise Magics. Then, the study produced a physical model of a flexible 3D printed corset with wearability by using an EOS P700 3D printer and TPU powder material. Eventually, the development process of this case was designed and generated in detail, from which extracted a universal 3D printing clothing development process.
Results The produced flexible 3D printing corset was made of the TPU material with Shore hardness of 88A and has a maximum wall thickness of 4 mm, resulting in a clothing with good shaping ability as well as the expected flexibility, which contains complex 3-D structures such as layered, overhang and hollow for testing the capabilities of SLS-TPU technology in the forming of complex 3-D structures(Fig. 11). A rear central non through-body invisible zipper placket was used to enable the clothing to be put on and taken off(Fig. 7), which was divided into upper and lower parts with a waist division line and is manufactured separately, and assembled together with boss-groove structure and a sewing process by using 0.12 mm transparent nylon wire(Fig. 6, Fig. 8). The universal process of 3D printing clothing based on SLS process, TPU material and thin wall structure obtained through this study includes 5 major steps, which are digital 3-D base model modelling, digital 3D printing model modeling, digital 3D printing model data preparation, physical 3D printing model manufacturing, and physical 3D printing model post-processing, as well as the 20 sub-steps under them(Tab. 1). The fourth step was not discussed in detail because the work was carried out by a third party manufacturer.
Conclusion The study shows that the initial shape of the 3-D digital model, the fit between the hardness of the TPU material and the wall thickness of the model have a significant impact on the variable and flexible shape of the 3D printed clothing, and also demon-strates the feasibility of using the sewing process for piecing together 3D printed models of clothing. The study proposed a series of solutions for 5 key generic issues in this case development process, including 1) the initial shape setting of the digital clothing 3-D base model, 2) the setting of the clothing 3D printed model's wall thickness and material hardness, 3) the matching of the clothing 3D structure to the 3D printing process, 4) the design of the 3D printing clothing putting on and taking off method, and 5) the disassembly and assembly of the clothing 3D printing model. In the future, the various steps of the clothing 3D printing process involved in this study can be studied in more depth in terms of material performance, process technology, cost control and sustainability by using quantitative measurements and lateral comparisons.

Key words: cloth, 3D printing, additive manufacturing, thermoplastic polyurethane, selective laser sintering, thin-walled structure

中图分类号: 

  • TS941.26

图1

服装3D打印技术代际划分"

图2

胸衣作品设计稿 注:1—贴体部分;2—宽松部分;3—复杂3D结构浮雕;4—分割线;5—隐形拉链半门襟。"

图3

基于CLO的胸衣三维基底数字模型建模过程"

图4

CLO胸衣基底模型的面料属性细节参数"

图5

胸衣前部浮雕结构建模与壁厚添加过程"

图6

胸衣3D打印模型拼缝拼接结构细节 1—凸台;2—凹槽。"

图7

胸衣3D打印模型的门襟"

图8

胸衣3D打印实物模型拼缝及拼接效果 1—后中门襟缝辑线;2—腰部拼缝缝辑线。"

表1

本研究设计开发流程总结"

步骤 细分步骤 工具
胸衣3D基底
数字模型建模
1 三维数字人体模特创建并导入CLO DAZ
2 二维虚拟裁片绘制与三维虚拟缝合 CLO
3 面料物理属性设置
4 二维裁片基于三维模拟效果修正
5 模型网格分辨率提高
6 模型导出
胸衣3D打印
模型建模
1 胸衣基底模型导入、对称化,与网格拓扑结构转换 Blender
2 胸衣基底模型实际打印尺寸修正 Blender、
Magics
3 胸衣打印模型前部浮雕结构建模 Blender
4 胸衣打印模型壁厚添加与合并
5 胸衣打印模型分割①
6 胸衣打印模型拼接结构建模
7 胸衣打印模型门襟结构建模
胸衣3D打印
模型数据准备
1 模型修复 Magics
2 模型分割②
3 模型摆放③
4 模型切片(第三方企业承接)
胸衣3D打印
实物模型制造
第三方企业承接 EOS P700
胸衣3D打印
模型后加工
1 模型拼接 锦纶线、
手缝针
2 配件(隐形拉链)安装

图9

动态模拟下面料3D模型的几何结构和拓扑结构"

图10

CLO软件中不同面料属性的服装动态模拟"

图11

胸衣3D打印模型前部浮雕复杂3D结构"

[1] VANDERPLOEG A, LEE S E, MAMP M. The application of 3D printing technology in the fashion industry[J]. International Journal of Fashion Design, Technology and Education, 2017, 10(2): 170-179.
doi: 10.1080/17543266.2016.1223355
[2] CHAKRABORTY S, BISWAS M C. 3D printing technology of polymer-fiber composites in textile and fashion industry: a potential roadmap of concept to consumer[J]. Composite Structures, 2020. DOI: 10.1016/j.compstruct.2020.112562.
doi: 10.1016/j.compstruct.2020.112562
[3] SMELIK A. Fractal folds: the posthuman fashion of Iris van Herpen[J]. Fashion Theory, 2022, 26(1): 5-26.
doi: 10.1080/1362704X.2020.1850035
[4] 高晓晓, 江红霞. 应用3D打印技术的运动文胸模杯个性化定制[J]. 纺织学报, 2018, 39(11): 135-139.
GAO Xiaoxiao, JIANG Hongxia. Customization of sports bra cup based on 3D printing[J]. Journal of Textile Research, 2018, 39(11): 135-139.
[5] WHITE J, FOLEY M, ROWLEY A. A novel approach to 3D-printed fabrics and garments[J]. 3D Printing and Additive Manufacturing, 2015, 2(3): 145-149.
doi: 10.1089/3dp.2015.0019
[6] BERMAN B. 3-D printing: The new industrial revolution[J]. Business Horizons, 2012, 55(2): 155-162.
doi: 10.1016/j.bushor.2011.11.003
[7] GU L. Study of development on apparel additive manufacturing technology[C]// RUAN Y, ISTOOK C, LIU X. Textile Bioengineering and Informatics Symposium Proceedings, Wuhan: TBIS, 2017: 240-247.
[8] 安妮, 李奇菊, 彭凡珂. 3D打印技术在女性束身衣生产中的应用[J]. 纺织学报, 2014, 35(4): 154-159.
AN Ni, LI Qiju, PENG Fanke. Application of 3D printing technology in women's corset production[J]. Journal of Textile Research, 2014, 35(4): 154-159.
[9] WU M, ZHI C, TU L, et al. Cotton-containing printing wires based on the two-dimensional braiding method for three-dimensional printing of clothing[J]. Textile Research Journal, 2022, 92(9/10), 1384-1393.
doi: 10.1177/00405175211059208
[10] BORRELLI-PERSSON L. Iris van Herpen-spring 2012 couture[EB/OL]. (2017-06-30)[2021-12-23]. https://www.vogue.com/fashion-shows/spring-2012-couture/iris-van-herpen.
[11] BEECROFT M. Digital interlooping: 3D printing of weft-knitted textile-based tubular structures using selective laser sintering of nylon powder[J]. International Journal of Fashion Design, Technology and Education, 2019, 12(2): 218-224.
doi: 10.1080/17543266.2019.1573269
[12] LOUIS-ROSENBERG J, ROSENKRANTZ J. Anti‐entrepreneurs using computation to unscale prod-uction[J]. Architectural Design, 2020, 90(2):112-119.
[13] 王祎, 葛静怡, 薛昕惟, 等. 改进Q学习的薄壁结构3D打印路径规划[J]. 计算机工程与应用, 2022, 58(12): 299-303.
doi: 10.3778/j.issn.1002-8331.2012-0438
WANG Yi, GE Jingyi, XUE Xinwei, et al. Path planning for complex thin-walled structures in 3D printing: an improved Q-learning method[J]. Computer Engineering and Applications, 2022, 58(12): 299-303.
doi: 10.3778/j.issn.1002-8331.2012-0438
[14] MATICH D. Karl Lagerfeld presents 3d printed chanel suit at paris fashion week[EB/OL]. (2015-07-09)[2022-01-08]. https://www.3printr.com/karl-lagerfeld-presents-3d-printed-chanel-suit-at-paris-fashion-week-0829847/.
[15] VITHANI K, GOYANES A, JANNIN V, et al. An overview of 3D printing technologies for soft materials and potential opportunities for lipid-based drug delivery systems[J]. Pharmaceutical Research, 2019, 36(1): 1-20.
doi: 10.1007/s11095-018-2525-z
[16] HUANG S H, LIU P, MOKASDAR A, et al. Additive manufacturing and its societal impact: a literature review[J]. The International Journal of Advanced Manufacturing Technology, 2013, 67(5): 1191-1203.
doi: 10.1007/s00170-012-4558-5
[17] Iris van Herpen, Julia Koerner and Materialise Reunite for the Biopiracy Collection[EB/OL]. (2014-03-06)[2021-12-24]. https://investors.materialise.com/news-releases/news-release-details/iris-van-herpen-julia-koerner-and-materialise-reunite-biopiracy.
[18] PILIPOVIC A. Impact of ageing, different share of recycled material and orientation on SLS polyamide product hardness[C]// RUJNI?-SOKELE M, ŠERCER M. AIP Conference Proceedings. [S.L.]:AIP Publishing LLC, 2016, 1779(1): 1-5.
[19] NAZIR A, JENG J Y. A high-speed additive manufacturing approach for achieving high printing speed and accuracy[J]. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 2020, 234(14): 2741-2749.
doi: 10.1177/0954406219861664
[20] 胡水仙, 陈建华, 白子文. 热塑性弹性体(TPE)简述:上[J]. 山西化工, 2014(4): 39-43.
HU Shuixian, CHEN Jianhua, BAI Ziwen. Brif on thermoplastic elastomer: I[J]. Shanxi Chemical Industry, 2014(4): 39-43.
[21] SINTERIT. SLS 3D printing powders[EB/OL]. (2019-11-30)[2021-12-24]. https://sls3d.de/wp-content/uploads/Sinterit_folder_Powders_11-2019-EN-spread.pdf.
[22] 陈亮, 赵曙光, 张丽娟, 等. 虚拟三维服装展示的发展历史与研究热点[J]. 纺织学报, 2011, 32(10): 153-160.
CHEN Liang, ZHAO Shuguang, ZHANG Lijuan, et al. History and research hot spot of three-dimensional virtual garment display[J]. Journal of Textile Research, 2011, 32(10): 153-160.
[23] YUAN Y. Programmable stiffness and applications of 3D printed TPU grid lattices[C]// SUNG C. Internation-al Design Engineering Technical Conferences and Computers and Information in Engineering Conference. New York: American Society of Mechanical Engineers, 2021: 1-10.
[24] YAP Y L, YEONG W Y. Additive manufacture of fashion and jewellery products: a mini review[J]. Virtual and Physical Prototyping, 2014, 9(3): 195-201.
doi: 10.1080/17452759.2014.938993
[25] 李智兴, 罗杰威. 当代数字化设计模型分类及其案例分析[J]. 建筑学报, 2020(2): 86-93.
LI Zhixing, LUO Jiewei. Classification of contemporary digital design models and related examples[J]. Architectural Journal, 2020(2): 86-93.
[26] 雍俊海, 陈梓苗. 基于物理的布料模拟研究综述[J]. 包装工程, 2021, 42(14): 28-39.
YONG Junhai, CHEN Zimiao. Review of physics-based cloth simulation[J]. Packaging Engineering, 2021, 42(14): 28-39.
[27] JEHBCO SILICONES, Silicone hardness and shore durometerk[EB/OL]. (2017-07-18)[2022-01-09]. https://jehbco.com.au/silicone-hardness-shore-durometer/.
[28] VIAN WD. Hardness comparison of polymer specimens produced with different[C]// DENTON N. 2018 ASEE IL-IN Section Conference. West Lafayette: ASEE, 2018. DOI: 10.5703/1288284316841.
doi: 10.5703/1288284316841
[1] 蔡丽玲, 任钱斌, 季晓芬, 肖增瑞, 章依凌. 女性运动裤脚款式感知评价与个性化定制推荐[J]. 纺织学报, 2023, 44(04): 165-171.
[2] 邓可卉, 卫艺林. 基于三维服装建模技术的古代服装数字化虚拟复原[J]. 纺织学报, 2023, 44(04): 179-186.
[3] 文嘉琪, 李新荣, 李兴兴, 吴柳波. 面向服装面料自动缝合的缝纫工艺参数建模[J]. 纺织学报, 2023, 44(03): 158-167.
[4] 刘军平, 张伏红, 胡新荣, 彭涛, 李丽, 朱强, 张俊杰. 基于多模态融合的个性化服装搭配推荐[J]. 纺织学报, 2023, 44(03): 176-186.
[5] 张昭华, 陈雪, 倪军, 杨玉桐, 邹一凡. 冷环境下局部电加热对人体热反应的影响[J]. 纺织学报, 2023, 44(03): 187-194.
[6] 张龙琳, 石茜, 张敏, 周莉, 李新荣. 基于跑步动作肌纤维主动力仿真的下肢皮肤形变表征[J]. 纺织学报, 2023, 44(03): 195-200.
[7] 赖安琪, 蒋高明, 李炳贤. 全成形毛衫花式结构三维仿真[J]. 纺织学报, 2023, 44(02): 103-110.
[8] 王诗潭, 江舒, 王云仪. 内穿服装对消防员热生理和心理反应的影响[J]. 纺织学报, 2023, 44(01): 164-170.
[9] 陈佳, 杨聪聪, 刘军平, 何儒汉, 梁金星. 手绘草图到服装图像的跨域生成[J]. 纺织学报, 2023, 44(01): 171-178.
[10] 张倩, 牛文鑫, 姜成华, 高晶, 王璐. 对抗微重力环境下肌肉骨骼废用性病变的压力服装研究进展[J]. 纺织学报, 2023, 44(01): 38-46.
[11] 苗雪, 王永进, 王方明. 充气保暖服装的充气尺寸变化率测试与应用[J]. 纺织学报, 2022, 43(12): 138-143.
[12] 陈莎, 修毅, 李雪飞. 基于遗传算法的服装大规模定制生产线平衡优化[J]. 纺织学报, 2022, 43(12): 144-150.
[13] 肖伯祥, 刘正东, 郭昱成, 王渊霞. 基于三维人体扫描模型的衬衣版型生成方法[J]. 纺织学报, 2022, 43(12): 151-159.
[14] 张文欢, 江舒, 李俊. 羽绒服装系统的面积因子预测及适用性分析[J]. 纺织学报, 2022, 43(11): 148-153.
[15] 顾梅花, 刘杰, 李立瑶, 崔琳. 结合特征学习与注意力机制的服装图像分割[J]. 纺织学报, 2022, 43(11): 163-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!