纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 42-49.doi: 10.13475/j.fzxb.20220106501
WANG Yuzhou1, ZHOU Mengjie1, JIANG Yuanjin1, CHEN Jiaben1, LI Yue2()
摘要:
为探究膜材料对纤维膜亲水性的影响机制,首先以聚丙烯腈(PAN)为原料制备偕胺肟(PAO),之后通过静电纺丝法制备PAO纳米纤维膜,并对其表面形貌、纤维直径、平均孔径、表面粗糙度、表面润湿性、力学性能、纤维膜官能团组成和油水乳液分离性能进行测试与分析。结果表明:静电纺丝技术可成功制备PAO纳米纤维膜,该纤维膜表面亲水性、油水乳液分离性能与未经偕胺肟化处理的PAN纤维膜相比有明显提升,当静电纺丝PAO质量分数为10%时,制备的PAO纳米纤维膜表现出优异的表面润湿性能和油水乳液分离性能,其初始水接触角为15.6°,水下油接触角为157°,对硅油乳液的分离通量为1 362.9 L/(m2·h),截留率为99.1%。
中图分类号:
[1] | 张玲玲, 陈强, 殷梦辉, 等. 膜分离技术在乳化态含油废水处理中的应用研究进展[J]. 应用化工, 2021, 50(10): 2791-2796. |
ZHANG Lingling, CHEN Qiang, YIN Menghui, et al. Application of membrane separation technology in the treatment of emulsified oily wastewater[J]. Applied Chemistry, 2021, 50(10): 2791-2796. | |
[2] | 陈龙, 代学玉, 李德棂, 等. 超亲水-水下超疏油表面的研究进展[J]. 山东化工, 2021, 50(9): 49-50. |
CHEN Long, DAI Xueyu, LI Deling, et al. Research progress of super-hydrophilic-underwater super-hydrophobic surface[J]. Shandong Chemical Industry, 2021, 50(9): 49-50. | |
[3] | 赵昕, 任宝娜, 胡苗苗, 等. 特殊浸润性纳米纤维膜材料在油水分离中的研究进展[J]. 材料工程, 2021, 49(10): 43-54. |
ZHAO Xin, REN Baona, HU Miaomiao, et al. Research progress of special wettability nano-fiber membrane materials in oil-water separation[J]. Material Engineering, 2021, 49(10): 43-54. | |
[4] | 汪滨, 张凡, 王娇娜, 等. 偕胺肟化PAN纳米纤维膜除铬性能的研究[J]. 高分子学报, 2016(8): 7-13. |
WANG Bin, ZHANG Fan, WANG Jiaona, et al. Study on the performance of chromium removal by amidoxime group modified PAN nanofiber membranes[J]. Acta Polymerica Sinica, 2016(8): 7-13. | |
[5] | 张一敏, 周伟涛, 何建新, 等. 偕胺肟化SiO2/聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(5): 25-29. |
ZHANG Yimin, ZHOU Weitao, HE Jianxin, et al. Preparation and properties of amidoximated silica/polyacrylonitrile composite fiber membranes[J]. Jour-nal of Textile Research, 2020, 41(5): 25-29. | |
[6] |
CHEN Xin, WAN Caixia, YU Rui, et al. Fabrication of amidoximated polyacrylonitrile nanofibrous membrane by simultaneously biaxial stretching for uranium extraction from seawater[J]. Desalination, 2020. DOI:10.1016/j.desal.2020.114447.
doi: 10.1016/j.desal.2020.114447 |
[7] |
WANG Ying, ZHANG Yaopeng, LI Qian, et al. Amidoximated cellulose fiber membrane for uranium extraction from simulated seawater[J]. Carbohydrate Polymers, 2020. DOI:10.1016/j.carbpol.2020.116627.
doi: 10.1016/j.carbpol.2020.116627 |
[8] |
ZHOU Weitao, ZHANG Yimin, DU Shan, et al. Superwettable amidoximed polyacrylonitrile-based nanofibrous nonwovens for rapid and highly efficient separation of oil/water emulsions[J]. ACS Applied Polymer Materials, 2021, 3(6): 3093-3102.
doi: 10.1021/acsapm.1c00313 |
[9] |
GE Jianlong, ZONG Dingding, JIN Qing, et al. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions[J]. Advanced Functional Materials, 2018. DOI: 10.1002/adfm.201705051.
doi: 10.1002/adfm.201705051 |
[10] |
ZHANG Mengjie, MA Wenjing, WU Shutian, et al. Electrospun frogspawn structured membrane for gravity-driven oil-water separation[J]. Journal of Colloid Interfaces and Science, 2019, 547: 136-144.
doi: 10.1016/j.jcis.2019.03.099 |
[11] |
FENG Shizhan, LUO Wanxia. WANG Luxiang, et al. Preparation and property of extremely stable superhydrophobic carbon fibers with core-shell structure[J]. Carbon, 2019, 150: 284-291.
doi: 10.1016/j.carbon.2019.05.021 |
[12] | LI Hui, ZHU Lei, ZHANG Jianqiang, et al. High-efficiency separation performance of oil-water emulsions of polyacrylonitrile nanofibrous membrane decorated with metal-organic frameworks[J]. Applied Surfaces Science, 2019, 476: 61-69. |
[13] |
RYKACZEWSKI Konrad, SCOTT John Henry J, RAJAURIA Sukumar, et al. Three dimensional aspects of droplet coalescence during dropwise condensation on superhydrophobic surfaces[J]. Soft Matter, 2011, 7(19): 8749-8752.
doi: 10.1039/c1sm06219k |
[14] |
WANG Dong, SONG Jianan, WEN Jun, et al. Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent[J]. Advanced Energy Materials, 2018. DOI:10.1002/aenm.201802607.
doi: 10.1002/aenm.201802607 |
[15] |
CHEN Yang, JIANG Lanying. Incorporation of UiO-66-NH2 into modified PAN nanofibers to enhance adsorption capacity and selectivity for oil removal[J]. Journal of Polymer Research, 2020.DOI:10.1007/s10965-02-2035-7.
doi: 10.1007/s10965-02-2035-7 |
[1] | 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25. |
[2] | 李龙, 张弦, 吴磊. 导电纱线制备方法与应用的研究进展[J]. 纺织学报, 2023, 44(07): 214-221. |
[3] | 张晋, 张林军, 解云川, 王健, 贾寅峰, 路涛, 张志成. 防护口罩用改性长效聚(偏氟乙烯-三氟乙烯)压电纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 26-32. |
[4] | 王青弘, 王迎, 郝新敏, 郭亚飞, 王美慧. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(06): 144-151. |
[5] | 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224. |
[6] | 史豪秦, 于影, 左雨欣, 刘宜胜, 左春柽. SnO2/聚乙烯吡咯烷酮防腐薄膜的制备及其在柔性铝-空气电池中的应用[J]. 纺织学报, 2023, 44(06): 33-40. |
[7] | 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49. |
[8] | 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56. |
[9] | 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76. |
[10] | 胡蝶飞, 王琰, 姚菊明, 祝国成. 纳米纤维复合结构空气过滤材料性能研究[J]. 纺织学报, 2023, 44(05): 77-83. |
[11] | 周堂, 汪邓兵, 赵磊, 刘祖一, 凤权. 负载WO3的细菌纤维素/Au膜制备及其催化性能[J]. 纺织学报, 2023, 44(04): 16-23. |
[12] | 李好义, 贾紫初, 刘宇亮, 谭晶, 丁玉梅, 杨卫民, 牟文英. 高压静电加载形式对聚合物熔体静电直写制备效果的影响[J]. 纺织学报, 2023, 44(04): 32-37. |
[13] | 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18. |
[14] | 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27. |
[15] | 何满堂, 王黎明, 覃小红, 俞建勇. 静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展[J]. 纺织学报, 2023, 44(03): 201-209. |
|