纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 42-49.doi: 10.13475/j.fzxb.20220106501

• 纤维材料 • 上一篇    下一篇

偕胺肟化聚丙烯腈纳米纤维膜的制备与油水乳液分离性能

王玉周1, 周梦洁1, 姜圆金1, 陈家本1, 李玥2()   

  1. 1.河南工程学院 材料工程学院, 河南 郑州 450007
    2.河南工程学院 化工与印染工程学院, 河南 郑州 450007
  • 收稿日期:2022-01-27 修回日期:2022-05-26 出版日期:2023-07-15 发布日期:2023-08-10
  • 通讯作者: 李玥(1986—),女,副教授,博士。主要研究方向为光催化纳米材料。E-mail:liyue0128@163.com
  • 作者简介:王玉周(1992—),女,副教授,博士。主要研究方向为纳米纤维膜。
  • 基金资助:
    河南省自然科学基金面上项目(212300410336);河南省高校科技创新人才培养计划项目(20HASTIT016);河南省高等学校重点科研项目计划项目(22A430015);河南工程学院博士培育基金项目(D2021003)

Preparation and oil-water emulsion separation performance of amidoximated polyacrylonitrile nanofiber membrane

WANG Yuzhou1, ZHOU Mengjie1, JIANG Yuanjin1, CHEN Jiaben1, LI Yue2()   

  1. 1. College of Materials Engineering, Henan University of Engineering, Zhengzhou, Henan 450007, China
    2. School of Chemical and Printing-Dyeing Engineering, Henan University of Engineering, Zhengzhou, Henan 450007, China
  • Received:2022-01-27 Revised:2022-05-26 Published:2023-07-15 Online:2023-08-10

摘要:

为探究膜材料对纤维膜亲水性的影响机制,首先以聚丙烯腈(PAN)为原料制备偕胺肟(PAO),之后通过静电纺丝法制备PAO纳米纤维膜,并对其表面形貌、纤维直径、平均孔径、表面粗糙度、表面润湿性、力学性能、纤维膜官能团组成和油水乳液分离性能进行测试与分析。结果表明:静电纺丝技术可成功制备PAO纳米纤维膜,该纤维膜表面亲水性、油水乳液分离性能与未经偕胺肟化处理的PAN纤维膜相比有明显提升,当静电纺丝PAO质量分数为10%时,制备的PAO纳米纤维膜表现出优异的表面润湿性能和油水乳液分离性能,其初始水接触角为15.6°,水下油接触角为157°,对硅油乳液的分离通量为1 362.9 L/(m2·h),截留率为99.1%。

关键词: 聚丙烯腈, 纳米纤维膜, 偕胺肟, 静电纺丝, 油水分离

Abstract:

Objective Efficient treatment of oily wastewater is of great significance for environmental and economic needs. The conventional separation technology can effectively separate oil from oil-water emulsion, but its separation efficiency is relatively low. Membrane separation technology can achieve the separation of oil-water emulsion by adjusting the pore size and changing the wettability of membrane materials. Nanofiber membrane prepared by electrospinning technology has been widely used to separate oil-water emulsion due to its high porosity, high connectivity, large specific surface area, adjustable wettability and other comprehensive characteristics. This research aims to enhance the oil-water emulsion separation performance of nanofiber membrane and to explore the influence mechanism of membrane materials on the hydrophilicity of fiber membrane.

Method Amidoxime (PAO) was synthesized from polyacrylonitrile (PAN), and then the PAO nanofiber membrane was prepared by electrospinning method. The surface morphology, fiber diameter, average pore diameter, surface roughness, surface wettability, mechanical properties, functional group composition of fiber membrane and oil-water emulsion separation performance were tested and analyzed.

Results The mass fraction of PAO directly was found to affect the surface morphology of the PAO membrane. The results showed that when the mass fraction of PAO in the spinning solution was 10%, the average fiber diameter was 0.21 μm and the diameter distribution of PAO membrane was relatively uniform with an average pore size of 0.88 μm (Fig. 2, Fig. 3). It was demonstrated that the surface roughness played an important role in influencing the wettability of the membrane surface. The surface roughness of the nanofiber membrane prepared after amidoximation was significantly improved, attributing to the increase in the diameter of the electrospun fiber (Fig. 4). The fabricated PAO nanofiber membranes were found to have abundant —NH2 and —OH hydrophilic groups, the 10%PAO nanofiber membrane exhibited excellent surface wettability with an initial water contact angle of 15.6° and an underwater oil contact angle of 157° (Fig. 5, Fig. 6). The stress and strain of the original PAN nanofiber membrane was 2.25 MPa and 25.15%, respectively. After amidoximation, the mechanical properties of the 10%PAO membrane did not decrease, remaining at 2.47 MPa and 26.64%, respectively, proving that direct amidoximation of the spinning solution can maintain various properties after amidoximation treatment and keep the flexibility and strength (Fig. 7). The permeation fluxes of the 10%PAO nanofiber membrane for silicone oil water, n-hexane water, petroleum ether water and edible oil water emulsion were 1 362.9, 1 658.9, 1 614.2 and 1 425.9 L/(m2·h), respectively, and the corresponding oil rejection rates were 99.1%, 98.5%, 99.3% and 98.6%, respectively (Fig. 12). This shows that PAO nanofiber membrane has good oil-water emulsion separation performance. It can separate various oil water emulsion only under gravity conditions, and shows excellent separation efficiency and precision, showing a good prospect for oil-water separation.

Conclusion When the content of the PAO spinning solution was 10%, the PAO nanofiber membrane showed good surface wettability and oil-water emulsion separation performance. The initial water contact angle is 15.6° and the underwater oil contact angle is 157°, and its permeation flux of silicone oil emulsion is 1 362.9 L/(m2·h), and the rejection rate is 99.1%. The surface hydrophilicity and oil-water emulsion separation performance of the fiber membrane are significantly improved compared with the PAN fiber membrane without amidoxime treatment which shows good prospects for the separation of oily wastewater.

Key words: polyacrylonitrile, nanofibrous membrane, amidoxime, electrospinning, oil-water separation

中图分类号: 

  • TS102.512

表1

系列纺丝液的原料配比"

样品编号 NH2OH·HCl
质量/g
NaOH
质量/g
PAN
质量/g
DMF体积/
mL
PAN 0.00 0.00 5.00 50.00
5%PAO 2.40 1.38 2.00 50.00
10%PAO 4.20 2.42 3.50 50.00
15%PAO 6.00 3.45 5.00 50.00

表2

油水乳液的理化性质"

油剂 油滴粒
径/μm
总有机碳
质量浓度/
(mg·L-1)
油水
体积比
表面活性剂质量
浓度/(mg·L-1)
硅油 557.3 1 771.4 1∶99 100
石油醚 646.9 2 837.7
正己烷 456.1 1 611.5
食用油 478.9 3 209.7

图1

不同质量分数PAO纳米纤维膜的SEM照片"

图2

不同质量分数PAO纳米纤维膜的纤维直径分布"

图3

不同质量分数PAO纳米纤维膜的孔径分布"

表3

不同质量分数PAO纳米纤维膜的孔隙率"

样品编号 孔隙率/%
PAN 88.12±4.78
5%PAO 89.16±5.06
10%PAO 89.82±1.49
15%PAO 84.17±5.97

图4

不同质量分数PAO纳米纤维膜的表面粗糙度三维图"

表4

不同质量分数PAO纳米纤维膜的表面粗糙度"

样品编号 平均粗糙度
Ra
均方根粗糙度
Rq
平均深度
Rv
PAN 1.24±0.05 1.54±0.06 5.12±0.27
5%PAO 1.32±0.06 1.65±0.12 4.50±0.45
10%PAO 1.31±0.14 1.64±0.15 4.72±0.64
15%PAO 1.78±0.20 2.15±0.17 4.69±0.60

图5

不同质量分数PAO纳米纤维膜的水接触角"

图6

不同质量分数PAO纳米纤维膜的水下油接触角"

图7

不同质量分数PAO纳米纤维膜的应力-应变曲线"

图8

10%PAO纳米纤维膜的红外光谱图"

图9

PAO纳米纤维膜对SSE的分离示意图和分离效果"

表5

不同质量分数PAO纳米纤维膜对硅油SSE的渗透通量"

样品编号 渗透通量/(L·m-2·h-1)
PAN 971.6±107.68
5%PAO 1 001.8±68.85
10%PAO 1 362.9±115.87
15%PAO 1 293.1±121.92

图10

不同质量分数PAO纳米纤维膜对硅油SSE的通量恢复率和截留率"

图11

10%PAO纳米纤维膜对硅油SSE的循环分离性能"

图12

10%PAO纳米纤维膜对不同SSE的渗透分离性能"

[1] 张玲玲, 陈强, 殷梦辉, 等. 膜分离技术在乳化态含油废水处理中的应用研究进展[J]. 应用化工, 2021, 50(10): 2791-2796.
ZHANG Lingling, CHEN Qiang, YIN Menghui, et al. Application of membrane separation technology in the treatment of emulsified oily wastewater[J]. Applied Chemistry, 2021, 50(10): 2791-2796.
[2] 陈龙, 代学玉, 李德棂, 等. 超亲水-水下超疏油表面的研究进展[J]. 山东化工, 2021, 50(9): 49-50.
CHEN Long, DAI Xueyu, LI Deling, et al. Research progress of super-hydrophilic-underwater super-hydrophobic surface[J]. Shandong Chemical Industry, 2021, 50(9): 49-50.
[3] 赵昕, 任宝娜, 胡苗苗, 等. 特殊浸润性纳米纤维膜材料在油水分离中的研究进展[J]. 材料工程, 2021, 49(10): 43-54.
ZHAO Xin, REN Baona, HU Miaomiao, et al. Research progress of special wettability nano-fiber membrane materials in oil-water separation[J]. Material Engineering, 2021, 49(10): 43-54.
[4] 汪滨, 张凡, 王娇娜, 等. 偕胺肟化PAN纳米纤维膜除铬性能的研究[J]. 高分子学报, 2016(8): 7-13.
WANG Bin, ZHANG Fan, WANG Jiaona, et al. Study on the performance of chromium removal by amidoxime group modified PAN nanofiber membranes[J]. Acta Polymerica Sinica, 2016(8): 7-13.
[5] 张一敏, 周伟涛, 何建新, 等. 偕胺肟化SiO2/聚丙烯腈复合纤维膜的制备及其性能[J]. 纺织学报, 2020, 41(5): 25-29.
ZHANG Yimin, ZHOU Weitao, HE Jianxin, et al. Preparation and properties of amidoximated silica/polyacrylonitrile composite fiber membranes[J]. Jour-nal of Textile Research, 2020, 41(5): 25-29.
[6] CHEN Xin, WAN Caixia, YU Rui, et al. Fabrication of amidoximated polyacrylonitrile nanofibrous membrane by simultaneously biaxial stretching for uranium extraction from seawater[J]. Desalination, 2020. DOI:10.1016/j.desal.2020.114447.
doi: 10.1016/j.desal.2020.114447
[7] WANG Ying, ZHANG Yaopeng, LI Qian, et al. Amidoximated cellulose fiber membrane for uranium extraction from simulated seawater[J]. Carbohydrate Polymers, 2020. DOI:10.1016/j.carbpol.2020.116627.
doi: 10.1016/j.carbpol.2020.116627
[8] ZHOU Weitao, ZHANG Yimin, DU Shan, et al. Superwettable amidoximed polyacrylonitrile-based nanofibrous nonwovens for rapid and highly efficient separation of oil/water emulsions[J]. ACS Applied Polymer Materials, 2021, 3(6): 3093-3102.
doi: 10.1021/acsapm.1c00313
[9] GE Jianlong, ZONG Dingding, JIN Qing, et al. Biomimetic and superwettable nanofibrous skins for highly efficient separation of oil-in-water emulsions[J]. Advanced Functional Materials, 2018. DOI: 10.1002/adfm.201705051.
doi: 10.1002/adfm.201705051
[10] ZHANG Mengjie, MA Wenjing, WU Shutian, et al. Electrospun frogspawn structured membrane for gravity-driven oil-water separation[J]. Journal of Colloid Interfaces and Science, 2019, 547: 136-144.
doi: 10.1016/j.jcis.2019.03.099
[11] FENG Shizhan, LUO Wanxia. WANG Luxiang, et al. Preparation and property of extremely stable superhydrophobic carbon fibers with core-shell structure[J]. Carbon, 2019, 150: 284-291.
doi: 10.1016/j.carbon.2019.05.021
[12] LI Hui, ZHU Lei, ZHANG Jianqiang, et al. High-efficiency separation performance of oil-water emulsions of polyacrylonitrile nanofibrous membrane decorated with metal-organic frameworks[J]. Applied Surfaces Science, 2019, 476: 61-69.
[13] RYKACZEWSKI Konrad, SCOTT John Henry J, RAJAURIA Sukumar, et al. Three dimensional aspects of droplet coalescence during dropwise condensation on superhydrophobic surfaces[J]. Soft Matter, 2011, 7(19): 8749-8752.
doi: 10.1039/c1sm06219k
[14] WANG Dong, SONG Jianan, WEN Jun, et al. Significantly enhanced uranium extraction from seawater with mass produced fully amidoximated nanofiber adsorbent[J]. Advanced Energy Materials, 2018. DOI:10.1002/aenm.201802607.
doi: 10.1002/aenm.201802607
[15] CHEN Yang, JIANG Lanying. Incorporation of UiO-66-NH2 into modified PAN nanofibers to enhance adsorption capacity and selectivity for oil removal[J]. Journal of Polymer Research, 2020.DOI:10.1007/s10965-02-2035-7.
doi: 10.1007/s10965-02-2035-7
[1] 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25.
[2] 李龙, 张弦, 吴磊. 导电纱线制备方法与应用的研究进展[J]. 纺织学报, 2023, 44(07): 214-221.
[3] 张晋, 张林军, 解云川, 王健, 贾寅峰, 路涛, 张志成. 防护口罩用改性长效聚(偏氟乙烯-三氟乙烯)压电纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 26-32.
[4] 王青弘, 王迎, 郝新敏, 郭亚飞, 王美慧. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(06): 144-151.
[5] 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224.
[6] 史豪秦, 于影, 左雨欣, 刘宜胜, 左春柽. SnO2/聚乙烯吡咯烷酮防腐薄膜的制备及其在柔性铝-空气电池中的应用[J]. 纺织学报, 2023, 44(06): 33-40.
[7] 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49.
[8] 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56.
[9] 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76.
[10] 胡蝶飞, 王琰, 姚菊明, 祝国成. 纳米纤维复合结构空气过滤材料性能研究[J]. 纺织学报, 2023, 44(05): 77-83.
[11] 周堂, 汪邓兵, 赵磊, 刘祖一, 凤权. 负载WO3的细菌纤维素/Au膜制备及其催化性能[J]. 纺织学报, 2023, 44(04): 16-23.
[12] 李好义, 贾紫初, 刘宇亮, 谭晶, 丁玉梅, 杨卫民, 牟文英. 高压静电加载形式对聚合物熔体静电直写制备效果的影响[J]. 纺织学报, 2023, 44(04): 32-37.
[13] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[14] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[15] 何满堂, 王黎明, 覃小红, 俞建勇. 静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展[J]. 纺织学报, 2023, 44(03): 201-209.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!