纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 144-151.doi: 10.13475/j.fzxb.20220201101

• 染整与化学品 • 上一篇    下一篇

静电纺聚酰胺纳米纤维复合织物制备工艺优化

王青弘1, 王迎1(), 郝新敏2, 郭亚飞2, 王美慧2   

  1. 1.大连工业大学 纺织与材料工程学院, 辽宁 大连 116034
    2.军事科学院 系统工程研究院, 北京 100010
  • 收稿日期:2022-02-11 修回日期:2022-09-21 出版日期:2023-06-15 发布日期:2023-07-20
  • 通讯作者: 王迎
  • 作者简介:王青弘(1997—),女,硕士生。主要研究方向为静电纺丝纳米纤维膜的开发与应用。
  • 基金资助:
    国家自然科学基金项目(U1808211);辽宁省重大科技专项(2019JH1/10100010)

Processing optimization of composite fabrics deposited with electrospinning polyamide nano-fibers

WANG Qinghong1, WANG Ying1(), HAO Xinmin2, GUO Yafei2, WANG Meihui2   

  1. 1. School of Textile and Material Engineering, Dalian Polytechnic University, Dalian, Liaoning 116034, China
    2. Systems Engineering Institute, Academy of Military Sciences, Beijing 100010, China
  • Received:2022-02-11 Revised:2022-09-21 Published:2023-06-15 Online:2023-07-20
  • Contact: WANG Ying

摘要:

为提高纳米纤维膜与织物的界面结合力,优化静电纺纳米纤维复合机织物制备工艺,考察了接收基材织物的导电性、聚酰胺56(PA56)纺丝液浓度、接收基材种类对纤维膜表面形貌的影响,以及接收基材对复合织物黏附性的影响。结果表明:PA56最佳静电纺丝液质量分数为12%~18%;接收性较好的基材为棉、粘胶织物;抗静电处理可提升涤纶织物对纳米纤维的沉积性能;不使用黏合剂,静电纺膜梯度沉积法可提升纳米纤维与织物间的界面结合力;以棉织物为基材、PA56低质量分数(6%,10~20 min)纳米纤维膜为中间层、PA56高质量分数(15%, 40 min)纳米纤维膜为表层的复合织物,其剥离强力比常规沉积法提升2~3倍。

关键词: 接收基材, 聚酰胺56, 静电纺丝, 纳米纤维, 复合织物, 界面结合力

Abstract:

Objective In order to improve the inter-facial bonding between the nanomembrane and woven fabric, and reduce the clogging of the nanofiber membrane micropores caused by the use of glue, effects of conductivity, polyamide 56 (PA56) spinning solution and type of receiving substrate on the surface morphology of nanofibers were investigated. The preparation process of electrospinning nanofiber deposition composite woven fabrics was optimized, and the relationship between microporous structure and inter-facial bonding force was established.
Method Using polyamide 56 as spinning solution, a woven fabric as flexible receiving substrate and needle-free electrostatic spinning machine, instead of using adhesive, the adhesion between nanofiber membrane and textile interface was improved by electrostatic spinning film gradient deposition method to prepare nanofiber composite fabric. The effects of the conductivity of receiving substrate fabric, the concentration of spinning solution, the types and properties of receiving substrate on the surface morphology of nanofiber membrane and the adhesion of composite fabric were explored by analyzing the appearance and cross-sectional morphology of nanofiber membrane combined with the current-voltage curve of fabric and the peeling strength of composite fabric.
Results Nanofiber composite woven fabric was prepared by needleless electrospinning, and the inter-facial bonding force between the fabric and nanofiber membrane was improved by depositing electrospun membrane with concentration gradient. It was found that the optimum spinning concentration of PA56 was 12%-18% (Fig. 3), for creating uniform nanofiber membrane with uniform fiber diameter. Fabric types were shown to have great influence on the morphology and adhesion effect of fiber membrane (Fig. 4), where the optimal receiving substrate was found to be the cotton woven fabric. By improving conductivity of the receiving substrate (as shown in Tab. 2), the composite material demonstrated better surface morphology and receiving effect. Anti-static treatment was able to improve the morphology and deposition effect of nanofibers received by polyester fabric (Fig. 5). Using electrostatic spinning film gradient deposition method was found to improve the peeling strength between receiving substrate and fiber film (Fig. 6 and Fig. 7). Cotton fabric was selected as the receiving substrate, and the nanofiber composite fabric was prepared by gradient deposition process of PA56 low concentration nanofiber layer (6%, 10-20 min) and PA56 high concentration nanofiber membrane (15%, 40 min). The three-layer structure showed great improvement in interface bonding effect (Fig. 8), where the interface bonding force was improved by 3.543 times (Fig. 7), and the finally prepared concentration gradient nanofiber composite fabric demonstrated good hydrophilicity similar to that of traditional textiles (Fig. 9). The surface density and thickness of the prepared concentration gradient nanofiber composite fabric remained unchanged virtually after washing, and the micro-morphology of the fiber membrane before and after washing indicated that washing had little effect on the apparent morphology of the fiber membrane.
Conclusion The nanofiber composite fabric is composed of electrospun nanofiber membrane and ordinary fabric. In this design, nano-fiber films are deposited on the surface of the traditional fabric by concentration gradient method, and nano-fiber composite fabric with higher added value are prepared without using hot melt adhesive or other adhesives. The prepared nanofiber composite fabric is simple in manufacturing method and has certain inter-facial bonding force, and at the same time, it has high specific surface area and porosity of the surface nanofiber material, as well as good mechanical properties of the bottom material, and excellent hydrophilicity and washability. This study helps broaden the potential application value of electrospun nanofiber membrane in the field of functional textiles.

Key words: receiving substrate, polyamide 56, electrospinning, nanofiber, composite fabric, inter-facial bonding force

中图分类号: 

  • TS111.8

图1

复合织物制备图"

图2

织物的电流-电压曲线"

表1

涤纶、腈纶织物的抗静电性能"

处理
状态
涤纶织物 腈纶织物
摩擦带电
电压/V
衰减时间/s 摩擦带电
电压/V
衰减时间/s
处理前 20~25 3.500 16~18 7.575
处理后 7~11 1.025 1~2 1.025

图3

不同质量分数的PA56纳米纤维膜的表面形貌"

图4

织物表面PA56纳米纤维膜形貌(×2 000)"

图5

涤纶织物表面纳米纤维膜形貌照片(×30 000)"

表2

复合织物的黏附效果"

类别 PP非织
造布

织物
粘胶
织物
涤纶
织物
腈纶
织物
锦纶
织物
黏附性 ++ ++ ++ - - +
黏附
效果
可黏附,
但易
剥离
可黏附,
但易
剥离
可黏附,
但易
剥离
分层,
无黏
附点
分层,
无黏
附点
分层,
有黏
附点

图6

复合织物的剥离强力"

图7

复合织物的剥离强力随纺丝时间变化曲线"

图8

复合织物截面形貌SEM照片"

图9

复合织物及棉织物的接触角"

图10

水洗前后复合织物表面形貌(×20 000)"

[1] 王丽, 熊艳丽, 郭嫣. 高透湿聚氨酯层压帐篷面料的开发[J]. 纺织报告, 2021, 40(1):16-18.
WANG Li, XIONG Yanli, GUO Yan, et al. Development of high moisture permeable polyurethane laminated tent fabric[J]. Textile Reports, 2021, 40(1):16-18.
[2] XU Lihui, PAN Hong, WANG Liming, et al. Preparation of fluorine-free superhydrophobic cotton fabric with polyacrylate/SiO2 nanocomposite[J]. Journal of Nanoscience and Nanotechnology, 2020, 20(4):2292-2300.
doi: 10.1166/jnn.2020.17317 pmid: 31492239
[3] 张毅, 邵利锋, 杨彬, 等. 棕榈纤维毡/聚(3-羟基丁酸酯-co-3-羟基戊酸酯)热压复合材料的吸声性能[J]. 纺织学报, 2022, 43(10):24-30.
ZHANG Yi, SHAO Lifeng, YANG Bin, et al. Acoustic properties of palm fiber felt/poly(3-hydroxybutyrate-co-3-hydroxyvalerate) hot-pressed composites[J]. Journal of Textile Research, 2022, 43(10):24-30.
doi: 10.1177/004051757304300104
[4] 刘春晖, 楚艳艳, 廖熙, 等. 涤纶织物复合静电纺PVDF纳米纤维防水透湿膜的工艺探索[J]. 产业用纺织品, 2020, 38(1): 20-27.
LIU Chunhui, CHU Yanyan, LIAO Xi, et al. Exploration on technology of polyester fabric composited with waterproof and moisture permeable electrospun PVDF nanofiber membrane[J]. Technical Textiles, 2020, 38(1): 20-27.
[5] 李沐芳, 陈佳鑫, 曾凡佳, 等. 间隔织物基光热-热电复合材料的制备及其性能[J]. 纺织学报, 2022, 43(10):65-70.
LI Mufang, CHEN Jiaxin, ZENG Fanjia, et al. Preparation and performance of spacer fabric-based photothermal-thermoelectric composites[J]. Journal of Textile Research, 2022, 43(10):65-70.
[6] 李小力, 夏鑫, 诸葛依娜, 等. 氟橡胶/聚氨酯/含氟聚氨酯静电纺复合织物的制备及防酸透湿性分析[J]. 轻纺工业与技术, 2020, 49(3): 11-13.
LI Xiaoli, XIA Xin, ZHUGE Yina, et al. Preparation of fluoroelastomer/polyurethane/fluorinated polyurethane electrospinn composite fabric and analysis of acid and moisture permeability[J]. Textile Industry and Technology, 2020, 49(3): 11-13.
[7] 侯大伟. 耐高温聚酰亚胺纳米纤维过滤材料的制备及性能研究[D]. 上海: 东华大学, 2021: 3-8.
HOU Dawei. Preparation and performance study of high temperature resistant polyimide nanofiber filtration material[D]. Shanghai: Donghua University, 2021:3-8.
[8] 吴萌萌. 静电纺取向纳米纤维包芯纱的制备及其压电性能研究[D]. 天津: 天津工业大学, 2021:41-47.
WU Mengmeng. Orientation of electrospun nanofibers study on preparation of core-spun yarn and its piezoelectric properties[D]. Tianjin: Tiangong University, 2021:41-47.
[9] SELVA Balasubramanian, AROCKIA Jayalatha Kulandaisamy, KARNAM JAYANTH Babu, et al. Metal organic framework functionalized textiles as protective clothing for the detection and detoxification of chemical warfare agents: a review[J]. Industrial & Engineering Chemistry Research, 2021, 60(11): 4218-4239.
doi: 10.1021/acs.iecr.0c06096
[10] 陆侥. 无针头静电纺纳米纤维热熔粘合复合材料的制备及性能[D]. 苏州: 苏州大学, 2018: 6-15.
LU Yao. Preparation and properties of nanofiber hot-melt adhesive composites by needleless electrospinning[D]. Suzhou: Soochow University, 2018: 6-15.
[11] 洪贤良, 陈小晖, 张建青, 等. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(6):174-182.
HONG Xianliang, CHEN Xiaohui, ZHANG Jianqing, et al. Research progress in preparation of hierarchically structured air filter materials by electrospinning[J]. Journal of Textile Research, 2020, 41(6): 174-182.
doi: 10.1177/004051757104100215
[12] 杨群, 梁琦, 王黎明, 等. 聚N-异丙基丙烯酰胺/聚氨酯梯度复合膜的温敏亲-疏水性及透湿性[J]. 纺织学报, 2021, 42(9):17-23, 38.
YANG Qun, LIANG Qi, WANG Liming, et al. Thermo-sensitive hydrophilic-hydrophobic transition and moisture permeability of poly-N-isopropylacrylamide/polyurethane gradient composite membrane[J]. Journal of Textile Research, 2021, 42(9):17-23, 38.
[13] 郭国宁, 赵瑾朝, 刘沙柯, 等. 基于静电纺多巴胺原位聚合的涤纶表面亲水改性[J]. 武汉纺织大学学报, 2018, 31(6):3-6.
GUO Guoning, ZHAO Jinchao, LIU Shake, et al. Dopamine based on electrostatic spinning polyester surface hydrophilic modification of in-situ polymeriza-tion[J]. Journal of Wuhan Textile University, 2018, 31(6): 3-6.
[14] 林童, 田龙.一种消除飞丝和动态调节纤维与基材粘附力的静电纺纤维收集装置:112695389A[P]. 2021-04-23.
LIN Tong, TIAN Long.A fly eradication and dynamic regulation of fiber and substrate adhesion of electrospun fiber collection device: 112695389A[P]. 2021-04-23.
[15] 李晓强, 孙倩, 张家琳, 等.一种复合防水透湿面料及其制备方法:109435358B[P]. 2019-03-08.
LI Xiaoqiang, SUN Qian, ZHANG Jialin, et al. A compound waterproof and moisture permeable fabric and its preparation: 109435358B[P]. 2019-03-08.
[16] 陈莹, 方浩霞. 疏水性导电聚吡咯整理棉织物的制备及其性能[J]. 纺织学报, 2021, 42(10): 115-119, 131.
CHEN Ying, FANG Haoxia. Preparation and properties of hydrophobic conductive polypyrrole coating fabrics[J]. Journal of Textile Research, 2021, 42(10): 115-119, 131.
[17] SUN Hanxue, LI Yuanzhen, LI Jiyan, et al. Facile preparation of a carbon-based hybrid film for efficient solar-driven interfacial water evaporation[J]. ACS Applied Materials & Interfaces, 2021, 13(28): 33427-33436.
[1] 吕婧, 刘增伟, 程青青, 张学同. 芳纶纳米纤维气凝胶的研究进展[J]. 纺织学报, 2023, 44(06): 10-20.
[2] 徐瑞东, 刘红, 王航, 朱士凤, 曲丽君, 田明伟. 离子型水凝胶复合织物构筑及其应变传感性能[J]. 纺织学报, 2023, 44(06): 137-143.
[3] 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224.
[4] 史豪秦, 于影, 左雨欣, 刘宜胜, 左春柽. SnO2/聚乙烯吡咯烷酮防腐薄膜的制备及其在柔性铝-空气电池中的应用[J]. 纺织学报, 2023, 44(06): 33-40.
[5] 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49.
[6] 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56.
[7] 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76.
[8] 胡蝶飞, 王琰, 姚菊明, 祝国成. 纳米纤维复合结构空气过滤材料性能研究[J]. 纺织学报, 2023, 44(05): 77-83.
[9] 周堂, 汪邓兵, 赵磊, 刘祖一, 凤权. 负载WO3的细菌纤维素/Au膜制备及其催化性能[J]. 纺织学报, 2023, 44(04): 16-23.
[10] 李好义, 贾紫初, 刘宇亮, 谭晶, 丁玉梅, 杨卫民, 牟文英. 高压静电加载形式对聚合物熔体静电直写制备效果的影响[J]. 纺织学报, 2023, 44(04): 32-37.
[11] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[12] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[13] 何满堂, 王黎明, 覃小红, 俞建勇. 静电纺纳米纤维在界面太阳能蒸汽转化应用中的研究进展[J]. 纺织学报, 2023, 44(03): 201-209.
[14] 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35.
[15] 葛铖, 郑元生, 刘凯, 辛斌杰. 电压对静电纺串珠纤维成形过程的影响[J]. 纺织学报, 2023, 44(03): 36-41.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!