纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 115-123.doi: 10.13475/j.fzxb.20220201209

• 染整与化学品 • 上一篇    下一篇

原液着色聚酯纤维原位聚合用自分散纳米炭黑的制备及其性能

宋伟广1,2, 王冬1, 杜长森2, 梁栋2, 付少海1()   

  1. 1.江苏省纺织品数字喷墨印花工程技术研究中心(江南大学), 江苏 无锡 214122
    2.苏州世名科技股份有限公司, 江苏 苏州 215337
  • 收稿日期:2022-02-11 修回日期:2022-10-23 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 付少海(1972—),男,教授,博士。主要研究方向为生态染整技术。E-mail:shaohaifu@hotmail.com
  • 作者简介:宋伟广(1996—),男,硕士生。主要研究方向为颜料改性及其在纺织纤维中的应用。
  • 基金资助:
    国家重点研发计划项目(2020YFB0311401);江苏省自然科学基金项目(BK20190613)

Preparation and properties of self-dispersed nanoscale carbon black for in-situ polymerization of spun-dyed polyester fiber

SONG Weiguang1,2, WANG Dong1, DU Changsen2, LIANG Dong2, FU Shaohai1()   

  1. 1. Jiangsu Engineering Research Center for Digital Textile Inkjet Printing (Jiangnan University), Wuxi, Jiangsu 214122, China
    2. Suzhou Sunmun Technology Co., Ltd., Suzhou, Jiangsu 215337, China
  • Received:2022-02-11 Revised:2022-10-23 Published:2023-04-15 Online:2023-05-12

摘要:

针对原液着色聚酯纤维原位聚合用乙二醇基色浆储存稳定性差、运输成本高的问题,采用控制变量法研究炭黑、分散剂、分散工艺对自分散纳米炭黑的影响,利用响应面优化试验,探讨制备过程中分散剂质量分数、研磨时间、研磨转速对自分散纳米炭黑粒径的影响,得出最优研磨分散条件。借助透射电子显微镜、热重分析仪、接触角测量仪等探究了自分散纳米炭黑的表观形貌、耐热性能和亲水性能等。结果表明:选用SUA-305作为分散剂,AP-104H作为炭黑,在分散剂质量分数为30%,研磨时间为2 h,研磨转速为3 500 r/min时,自分散纳米炭黑粒径最小,为85 nm,多分散性指数(PDI)为0.163,储存稳定性优良,预估储存周期为26.8个月;自分散纳米炭黑与乙二醇的接触角为7°,并展现出良好的自分散性能;自分散纳米炭黑的耐热性良好,满足在聚酯聚合阶段280 ℃不分解的要求。

关键词: 自分散, 纳米炭黑, 原液着色, 聚酯纤维, 响应面优化

Abstract:

Objective The traditional polyester fiber spun-dyed mostly uses in-situ polymerization method to prepare high-performance colored polyester chips, where the carbon black grinding is dispersed in the ethylene glycol, and the carbon black ethylene glycol color paste is applied to the in-situ polymerization of polyester. However, conventional carbon black ethylene glycol color paste have poor storage stability and high transportation cost. In view of this problem, this study uses spray drying method to make self-dispersed nanoscale carbon black, aiming to effectively decrease transportation cost and improve the storage stability of carbon black in ethylene glycol.
Method In this study, nanoscale carbon black paste was prepared into self-dispersed nanoscale carbon black by a spray-drying method. The effects of carbon black, dispersant and dispersion process on self-dispersed nanoscale carbon black were parametrically studied. The effects of mass fraction of dispersant, grinding time and grinding speed on the particle size of self-dispersed nanoscale carbon black were discussed based on the response surface optimization experiment in order to obtain the optimal grinding and dispersion conditions. In addition, transmission electron microscope (TEM), thermogravimetric analysis (TGA) and contact angle meter were employed to study the apparent morphology, heat resistance and hydrophilicity.
Results Parametrical study was carried out to investigate the influence of dispersant and carbon black on the particle size of self-dispersed nanoscale carbon black. When the dispersant SUA-305 and the carbon black AP-104H were selected, the particle size of self-dispersed nanoscale carbon black was found to be the smallest (Fig. 2). The same method was used to study the influence of process conditions on the particle size and PDI (polydispersity index) of self-dispersed nanoscale carbon black. When the mass fraction of dispersant was 30%, the grinding time was 2 h, and the grinding speed was 3 500 r/min, the minimum particle sizes of self-dispersed nanoscale carbon black was 85 nm, and the minimum PDI was 0.163 (Fig. 3). The response surface was used to optimize the experiment, and the particle size was taken as the response value to further optimize the experimental results. The F-value in the model was 23.98 and the P-value was 0.000 2(Tab. 1). The minimum particle size of self-dispersed nanoscale carbon black were found on the three groups of response surfaces, and there were extreme values in the contour map, which were consistent with each other (Fig. 4). In order to determine the feasibility of the test, five groups of validation tests were conducted on the response surface model. The normalized deviation was 2.92%, and the normalized standard deviation was 1.544% (Tab. 2). The optimum process parameters were identified to be as follows: the mass fraction of dispersant is 30%, the grinding time is 2 h, and the grinding speed is 3 500 r/min. The original carbon black has a large particle size of 15.007 μm (Fig. 5). In comparison, the particle size of self-dispersed nanoscale carbon black is 0.085 μm, the contact angle between the original carbon black and ethylene glycol is 147°, and the contact angle between the ethylene glycol of self-dispersed nanoscale carbon black is 7° (Fig. 6). The original carbon black shows multiple agglomerations, and the self-dispersed nanoscale carbon black particles are small and evenly distributed. In Fig. 8, the self-dispersed nanoscale carbon black meets the requirement of decomposition resistant at 280 ℃ (Fig. 7). The self-dispersed nanoscale carbon black ethylene glycol color paste was centrifuged for 19 h at 4 000 r/min, its color paste sedimentation rate is 0.772 %/h, and the estimated storage period is 26.8 months (Fig. 9).
Conclusion This study evaluated the influence of five factors (dispersant, carbon black, dispersant mass fraction, and grinding time, grinding speed) on the particle size of self-dispersed nanoscale carbon black. Response surface methodology was used to optimize the three factors (mass fraction of dispersant, grinding time and grinding speed) in the preparation process of self-dispersed nanoscale carbon black. The variance analysis results of the optimization process show that the regression model is significant, which indicates that the reliability of the response surface model fitting equation is high, and the best process obtained from this model is feasible. Under the technological conditions that the mass fraction of dispersant is 30%, and the grinding time is 2 h, and the grinding speed is 3 500 r/min, the minimum particle size of self-dispersed nanoscale carbon black is 85 nm. The self-dispersed nanoscale carbon black demonstrates good hydrophilicity, good self-dispersion in ethylene glycol solution, and good heat resistance, meeting the preparation requirements of in-situ polymerization polyester fiber chips. The self-dispersed nanoscale carbon black ethylene glycol color paste has good storage stability with an estimated storage period of 26.8 months under the simulated natural sedimentation conditions.

Key words: self-dispersed, nanoscale carbon black, spun-dyed, polyester fiber, response surface optimization

中图分类号: 

  • TS193.21

图1

分散剂、炭黑种类对自分散纳米炭黑粒径的影响"

图2

分散剂质量分数、研磨时间、研磨转速对自分散纳米炭黑粒径的影响"

图3

分散剂质量分数、研磨时间、研磨转速三者交互作用下的响应面和等高线分布"

表1

自分散纳米炭黑粒径响应曲面二次模型方差分析"

来源 平方和 自由度 均方 F P 显著性
模型 1.24 9 0.138 1 23.98 0.000 2 显著
X 0.028 4 1 0.028 4 4.94 0.061 6
Y 0.008 3 1 0.008 3 1.43 0.270 1
Z 0.012 2 1 0.012 2 2.11 0.189 3
XY 0.004 8 1 0.004 8 0.83 0.393 4
XZ 0.025 1 1 0.025 1 4.36 0.075 1
YZ 0.027 4 1 0.027 4 4.76 0.065 5
X2 0.629 0 1 0.629 0 109.25 <0.000 1
Y2 0.221 8 1 0.221 8 38.52 0.000 4
Z2 0.178 2 1 0.178 2 30.96 0.000 8
残差 0.040 3 7 0.005 8
失拟误差 0.040 3 3 0.013 4
纯误差 0.00 00 4 0.000 0
总计 1.28 16

表2

归一化偏差和归一化标准偏差分析验证试验结果"

序号 分散剂质量
分数/%
研磨时
间/h
研磨转速/
(r·min-1)
粒径/μm 归一化偏
差%
归一化标准偏
差/%
理论值 试验值
1 30 2.048 3 455.262 0.083 0.085
2 30 2.098 3 354.338 0.098 0.121
3 30 1.917 3 067.778 0.205 0.182 2.92 1.544
4 30 2.287 3 193.739 0.224 0.206
5 30 2.345 3 828.566 0.249 0.295

图4

原始炭黑和自分散纳米炭黑的粒径分布曲线及TEM照片"

图5

原始炭黑与自分散纳米炭黑的乙二醇接触角"

图6

原始炭黑与自分散纳米炭黑在乙二醇中的自分散性比较及光学显微镜照片"

图7

原始炭黑与自分散纳米炭黑的TG曲线和DTG曲线"

图8

自分散纳米炭黑乙二醇色浆的储存稳定性"

[1] 董浩, 张丽平, 刘怡宁, 等. 聚乳酸纤维原液着色用改性炭黑的制备及其性能[J]. 纺织学报, 2019, 40(5): 64-69.
DONG Hao, ZHANG Liping, LIU Yining, et al. Preparation and properties of modified carbon black for dope dyeing of polylactic acid fiber[J]. Journal of Textile Research, 2019, 40(5): 64-69.
[2] 邱志成, 李鑫, 李志勇, 等. 原位法连续聚合聚酯/炭黑体系的结构与性能[J]. 纺织学报, 2021, 42(10):15-21.
QIU Zhicheng, LI Xin, LI Zhiyong, et al. Structure and properties of polyester/carbon black system prepared by in-situ continuous polymerization[J]. Journal of Textile Research, 2021, 42(10): 15-21.
[3] 张帅, 曾泳春, 汪军. 纳米颜料原液着色聚乳酸纤维的制备和性能研究[J]. 纺织器材, 2021, 48(3): 10-13.
ZHANG Shuai, ZENG Yongchun, WANG Jun. Preparation and properties of polylactic acid fiber dyed with nano pigment[J]. Textile Accessories, 2021, 48(3): 10-13.
[4] WANG Liangan, ZHANG Liping, WANG Dong, et al. Surface modification of carbon black by thiol-ene click reaction for improving dispersibility in aqueous phase[J]. Journal of Dispersion Science and Technology, 2019, 40(1): 152-160.
doi: 10.1080/01932691.2018.1467329
[5] WANG Liangan, ZHANG Liping, ZHANG Yi, et al. Preparation and characterization of aqueous phase self-dispersed CB/PSSS composites[J]. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2017, 533: 33-40.
doi: 10.1016/j.colsurfa.2017.08.023
[6] 杜长森, 刘烯, 宋文强, 等. 粘胶纤维原液着色用超细炭黑的制备及应用[J]. 人造纤维, 2019, 49(5): 2-8.
DU Changsen, LIU Xi, SONG Wenqiang, et al. Preparation and application of ultrafine carbon black for dyeing viscose fiber stock solution[J]. Artificial Fiber, 2019, 49 (5): 2-8.
[7] 周晓军, 李秋影, 吴驰飞. 超声引发自由基聚合制备聚苯乙烯磺酸钠接枝炭黑[J]. 高分子学报, 2008(4): 366-370.
ZHOU Xiaojun, LI Qiuying, WU Chifei. Preparation of ploy(sodium 4-styrenesulfonate ) grafted carbon black via ultrasonic irradiation initiated radical polymeriza-tion[J]. Acta Polymerica Sinica, 2008(4): 366-370.
[8] 付文, 王丽, 林乐智, 等. 表面接枝改性炭黑的制备与表征[J]. 精细石油化工, 2020, 37(1): 56-61.
FU Wen, WANG Li, LIN Lezhi, et al. Preparation and characterization of surface grafted modified carbon black[J]. Speciality Petrochemicals, 2020, 37(1): 56-61.
[9] 杨昕宇, 王兆伦, 潘明初, 等. 自分散纳米炭黑色浆的制备和研究[J]. 硅酸盐通报, 2009, 28(6):1276-1281.
YANG Xinyu, WANG Zhaolun, PAN Mingchu, et al. Preparation and study on self-dispersal nano carbon black pigment[J]. Bulletin of the Chinese Ceramic Society, 2009, 28(6): 1276-1281.
[10] 宋伟广, 王冬, 杜长森, 等. 自分散酞菁蓝15:3的制备及其在粘胶纤维原液着色中的应用[J]. 纺织学报, 2021, 42(10):8-14.
SONG Weiguang, WANG Dong, DU Changsen, et al. Preparation of self-dispersed phthalocyanine blue 15:3 particles and its application in spun-dyed viscose fiber[J]. Journal of Textile Research, 2021, 42(10): 8-14.
[11] 周攀. 中性墨水稳定性和流变性影响因素研究[D]. 太原: 太原理工大学, 2018:6-9.
ZHOU Pan. The study on the factors of stability and rheology of gel ink[D]. Taiyuan: Taiyuan University of Technology, 2018:6-9.
[12] 谢宇充, 夏举佩, 刘成龙. 低模数水玻璃碳化法制备白炭黑吸油值研究[J]. 非金属矿, 2015, 38(6):50-52.
XIE Yuchong, XIA Jupei, LIU Chenglong. Study on oil absorption value of white carbon black through carbonizing low modulus water glass[J]. Non-Metallic Mines, 2015, 38(6): 50-52.
[13] 邱靖斯, 刘越. 分散染料的细化分散及其对粒径影响研究进展[J]. 纺织学报, 2021, 42(8): 194-201.
QIU Jingsi, LIU Yue. Research progress in superfine dispersion of disperse dyes and its effect on particle-size[J]. Journal of Textile Research, 2021, 42(8): 194-201.
[14] 林丽隽. 水性炭黑色浆的制备及性能研究[D]. 广州: 华南理工大学, 2012: 1-5.
LIN Lijuan. Study on preparation and performance of aqueous carbon black dispersions[D]. Guangzhou: South China University of Technology, 2012: 1-5.
[1] 任嘉玮, 张圣明, 吉鹏, 王朝生, 王华平. 磷硅改性阻燃抑熔滴聚酯纤维的制备及其性能[J]. 纺织学报, 2023, 44(02): 1-10.
[2] 李龙龙, 魏朋, 吴萃霞, 闫金飞, 娄贺娟, 张一风, 夏于旻, 王燕萍, 王依民. 基于对羟基苯丙酸的生物基液晶共聚酯纤维的合成与性能[J]. 纺织学报, 2022, 43(01): 9-14.
[3] 靳宏, 张玥, 张玉梅, 王华平. 基于分子模拟预判Lyocell纤维原液着色体系中溶剂的稳定性[J]. 纺织学报, 2021, 42(10): 1-7.
[4] 邱志成, 李鑫, 李志勇, 王颖, 金剑, 武术方. 原位法连续聚合聚酯/炭黑体系的结构与性能[J]. 纺织学报, 2021, 42(10): 15-21.
[5] 田星, 沙源, 王兵兵, 夏延致. 乌贼墨黑色素着色海藻纤维的制备与表征[J]. 纺织学报, 2021, 42(10): 22-26.
[6] 宋伟广, 王冬, 杜长森, 梁栋, 付少海. 自分散酞菁蓝15:3的制备及其在粘胶纤维原液着色中的应用[J]. 纺织学报, 2021, 42(10): 8-14.
[7] 张陈恬, 赵连英, 顾学锋. 中空咖啡碳聚酯纤维/棉混纺纬平针织物的服用性能[J]. 纺织学报, 2021, 42(03): 102-109.
[8] 刘稀, 王冬, 张丽平, 李敏, 付少海. 低折射率树脂对原液着色粘胶纤维结构和性能的影响[J]. 纺织学报, 2020, 41(07): 9-14.
[9] 张娟, 郑环达, 乔燕, 高世会, 郑来久. 亚麻粗纱的超临界CO2煮漂工艺[J]. 纺织学报, 2020, 41(07): 93-101.
[10] 姬洪, 张阳, 陈康, 宋明根, 蒋权, 范永贵, 张玉梅, 王华平. 基于动力学特性的黑色高强聚酯工业丝研发[J]. 纺织学报, 2020, 41(04): 1-8.
[11] 董奎勇, 杨婷婷, 王学利, 何勇, 俞建勇. 生物基聚酯与聚酰胺纤维的研发进展[J]. 纺织学报, 2020, 41(01): 174-183.
[12] 魏艳红, 刘新金, 谢春萍, 苏旭中, 吉宜军. 几种差别化聚酯纤维的结构与性能[J]. 纺织学报, 2019, 40(11): 13-19.
[13] 董浩, 张丽平, 刘怡宁, 王乐军, 刘亚运, 付少海. 聚乳酸纤维原液着色用改性炭黑的制备及其性能[J]. 纺织学报, 2019, 40(05): 64-69.
[14] 王岩, 王连军, 陈建芳. 含胍抗菌聚酯纤维的制备及其性能[J]. 纺织学报, 2019, 40(04): 26-31.
[15] 万爱兰, 缪旭红, 马丕波, 陈晴, 陈方芳. 功能性纬编斜纹牛仔面料的设计及其性能[J]. 纺织学报, 2019, 40(04): 55-59.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!