纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 10-17.doi: 10.13475/j.fzxb.20220203301

• 纤维材料 • 上一篇    下一篇

光致变色聚乳酸纤维的纺制及其微观结构与性能

赵明顺1, 陈枭雄1, 于金超1,2, 潘志娟1,2()   

  1. 1.苏州大学 纺织与服装工程学院, 江苏 苏州 215021
    2.现代丝绸国家工程实验室(苏州), 江苏 苏州 215123
  • 收稿日期:2022-02-23 修回日期:2022-05-17 出版日期:2023-07-15 发布日期:2023-08-10
  • 通讯作者: 潘志娟(1967—),女,教授,博士。主要研究方向为新型纤维材料及产品开发。E-mail: zhjpan@suda.edu.cn
  • 作者简介:赵明顺(1998—),男,硕士生。主要研究方向为新型纤维材料开发。

Spinning and microstructure and properties of photochromic polylactic acid fibers

ZHAO Mingshun1, CHEN Xiaoxiong1, YU Jinchao1,2, PAN Zhijuan1,2()   

  1. 1. College of Textile and Clothing Engineering, Soochow University, Suzhou, Jiangsu 215021, China
    2. National Engineering Laboratory for Modern Silk(Suzhou), Suzhou, Jiangsu 215123, China
  • Received:2022-02-23 Revised:2022-05-17 Published:2023-07-15 Online:2023-08-10

摘要:

为得到兼具光致变色性能与力学性能的光致变色聚乳酸(PLA)纤维,将PLA和光致变色微胶囊通过熔体纺丝及热拉伸工艺制备出光致变色PLA纤维,并系统分析了纤维的形貌、结晶及热学性能,着重研究了光致变色微胶囊对纤维力学及可逆变色行为的影响,揭示纤维性能差异对其内部结构的影响。结果表明:光致变色PLA纤维的断裂强度随着光致变色微胶囊质量分数的增加而减小,结晶度呈先上升后下降趋势,当光致变色微胶囊质量分数为2%时具有与纯PLA相当的断裂强度,为4.15 cN/dtex,且结晶度达到最大55.42%;光致变色PLA纤维的光致变色性能呈现出高灵敏度、优异褪色性及光稳定性,且变色强度随光致变色微胶囊质量分数的增加而提高,但非线性上升,通过调整光致变色微胶囊的质量分数,可以达到纤维变色功能与力学性能兼具的目标。

关键词: 聚乳酸纤维, 熔体纺丝, 光致变色, 微胶囊, 变色机制, 力学性能

Abstract:

Objective In response to the national theme of low-carbon environmental protection, replacing conventional petroleum-based fibers with degradable polymer fibers has become necessary. However, it seems to be a great challenge to obtain degradable polymer fibers photochromic properties while maintaining their mechanical properties. It is therefore necessary to develop photochromic fibers with mechanical properties and discoloration effects.

Method The photochromic polylactic acid(PLA) fibers were prepared from PLA, and photochromic microcapsules by melt spinning and hot stretching processes, and their morphological, crystallographic, and thermal properties were systematically analyzed, with emphasis on the effect of photochromic microcapsules on the mechanical and reversible discoloration behavior of the fibers, so as to reveal the effect of the difference in fiber properties and their internal structure.

Results The fiber morphology structure showed that the smooth cross-sections and surfaces (Fig. 1, Fig. 2) the pure PLA fibers. As the dosage of added photochromic microcapsules increased, the fibers were found to form more and more pores and defects, leading to the deterioration of the mechanical properties of the fibers. The photochromic PLA fibers prepared in this research demonstrated a breaking strength of 3.54-4.18 cN/dtex, an elongation at break of 19.27%-27.01%, and a modulus of elasticity of 55.67-58.66 cN/dtex (Fig. 3). With the increase in dosage of photochromic microcapsules, the breaking strength and elongation at the break of the fibers illustrated a decreasing trend. Even so, when the mass fraction of microcapsules was 6%, the breaking strength and elongation at the break of the fibers were still 3.54 cN/dtex and 20.21%, which could meet the requirements of subsequent processing. Furthermore, the crystallinity of fibers with the increase in dosage of photochromic microcapsules tended to rise and then fall (Fig. 5). The crystallinity of fibers without microcapsules addition was 50.22%. The maximum crystallinity of 55.42% was reached when the mass fraction of microcapsules was 2%. With the continuous increase of photochromic microcapsules, the crystallinity decreased to 47.62%. The photochromic properties of the photochromic PLA fibers (Fig. 6-8) showed high sensitivity, excellent photobleaching (Fig. 9) and photostability (Fig. 10) with the color change completed within 1 s and returning to the original color within 50 s. The fibers' photochromic intensity varied with the microcapsules' mass fraction. The discoloration intensity of the fibers increased with the mass fraction of photochromic microcapsules, but not linearly. In addition, the fiber has excellent durability, maintaining a stable color intensity during 50 cycles of discoloration.

Conclusion Photochromic PLA fiber was successfully prepared by melt spinning technology, which has excellent mechanical properties, with a tensile breaking strength of 3.54-4.18 cN/dtex, elongation at break of 19.27%-27.01%, modulus of elasticity of 55.67-58.66 cN/dtex. Cut-in photochromic function presents high sensitivity, excellent photobleaching performance and photostability. The mechanical properties of fibers and the photochromic effect are closely related to the dispersion or aggregation state of photochromic microcapsules in the PLA matrix. When the mass fraction of microcapsules is low, their distribution in the PLA matrix is uniform, which is conducive to the orderly arrangement of PLA molecular chain segments and has a beneficial effect on the mechanical properties of fibers. When the mass fraction of microcapsules is high, the orderly arrangement of PLA molecular chain segments is hindered, which is the main factor affecting the mechanical properties of fibers. By adjusting the mass fraction of photochromic microcapsules, mutual coordination of fiber color change function was reached, leading to the possibility of achieving the mechanical properties of fibers. The fibers can be mass-produced by melt spinning, which has a broad application prospect in photochromic fabrics, anti-counterfeiting and military.

Key words: polylactic acid fiber, melt spinning, photochromic, microcapsule, discoloration mechanism, mechanical property

中图分类号: 

  • TS102.5

表1

光致变色微胶囊的化学组成"

成分 质量分数/% 用途
三聚氰胺甲醛树脂 1~5 外壳材料
1,3-二氢-1,3,3-三甲基-6'-(4-吗啉基)-螺[2H-吲哚-2,3'-[3H]萘并[2,1-B][1,4]噁嗪] 1~5 光致变色材料
1,2-二甲基-4-(1-苯乙基)苯 80~95 脂肪酸溶剂

图1

光致变色微胶囊及光致变色PLA纤维的表面SEM照片"

图2

光致变色PLA纤维的截面SEM照片"

图3

纯PLA及光致变色PLA纤维的力学性能曲线及指标"

图4

纯PLA及光致变色PLA纤维的DSC曲线"

表2

纯PLA及光致变色PLA纤维的热学性能数据"

样品名称 Tg/℃ Tm/℃ ΔHc/(J·g-1) Xc/%
纯PLA 60.83 162.45 47.42 50.61
PLA-0.02pcm 59.05 162.24 47.97 51.20
PLA-0.04pcm 58.04 161.37 45.73 48.81
PLA-0.06pcm 56.68 161.15 44.51 47.50

图5

纯PLA及光致变色PLA纤维的WAXD图"

图6

光致变色微胶囊、纯PLA及光致变色PLA纤维的UV吸收值"

图7

光致变色PLA纤维变色机制示意图"

图8

光致变色纤维的变色效果图"

表3

纯PLA及光致变色PLA纤维的Lab值"

样品名称 ΔE L* a* b*
纯PLA 0 88.59 0.11 1.28
PLA-0.02pcm 57.21 32.53 1.01 -13.47
PLA-0.04pcm 62.76 28.46 2.60 -16.53
PLA-0.06pcm 65.32 25.74 3.11 -16.27

图9

光致变色PLA纤维的光褪色性"

图10

光致变色PLA纤维的光稳定性"

[1] SUN X, ZHANG J, LU X, et al. Mechanochromic photonic-crystal fibers based on continuous sheets of aligned carbon nanotubes[J]. Angewandte Chemie, 2015, 127(12): 3701-3705.
doi: 10.1002/ange.201412475
[2] YANG Y, ZHANG M, JU Z, et al. Poly (lactic acid) fibers, yarns and fabrics: manufacturing, properties and applications[J]. Textile Research Journal, 2021, 91(13/14): 1641-1669.
doi: 10.1177/0040517520984101
[3] 程博闻, 西鹏, 庄旭品. 光致发光与变色纤维发展趋势[J]. 纺织科学研究, 2020(4):70-71.
CHENG Bowen, XI Peng, ZHUANG Xupin. Development trend of photoluminescent and color-changing fibers[J]. Textile Science Research, 2020(4):70-71.
[4] SHEN X, HU Q, GE M. Fabrication and characterization of multi stimuli-responsive fibers via wet-spinning process[J]. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 2021.DOI:10.1016/j.saa.2020.119245.
doi: 10.1016/j.saa.2020.119245
[5] PINTO T V, FERNANDES D M, GUEDES A, et al. Photochromic polypropylene fibers based on UV-responsive silica@phosphomolybdate nanoparticles through melt spinning technology[J]. Chemical Engineering Journal, 2018, 350: 856-866.
doi: 10.1016/j.cej.2018.05.155
[6] 邢善静, 谢跃亭, 曹俊友, 等. 光致变色再生纤维素纤维的研制及应用[J]. 针织工业, 2016(8):1-3.
XING Shanjing, XIE Yueting, CAO Junyou, et al. Development and application of photochromic regenerated cellulose fiber[J]. Knitting Industries, 2016(8):1-3.
[7] 卞雪艳, 朱平, 楚旭东, 等. 光致变色海藻纤维的制备及性能研究[J]. 合成纤维, 2018, 47(8):1-5.
BIAN Xueyan, ZHU Ping, CHU Xudong, et al. Preparation and properties of photochromic seaweed fibers[J]. Synthetic Fibers, 2018, 47(8):1-5.
[8] KAAVESSINA M, ALI I, ELLEITHY R H, et al. Crystallization behavior of poly (lactic acid)/elastomer blends[J]. Journal of Polymer Research, 2012, 19(2): 1-12.
doi: 10.1007/s10965-012-0001-8
[9] 张春艳, 陈丽华. 光致变色织物变色效果的测试条件分析[J]. 北京服装学院学报(自然科学版), 2020, 40(2):40-45.
ZHANG Chunyan, CHEN Lihua. Test condition analysis of color change effect of photochromic fabric[J]. Journal of Beijing Institute of Fashion Technology (Natural Science Edition), 2020, 40(2):40-45.
[10] OZKOC G, KEMALOGLU S. Morphology, biodegradability, mechanical, and thermal properties of nanocomposite films based on PLA and plasticized PLA[J]. Journal of Applied Polymer Science, 2009, 114(4): 2481-2487.
doi: 10.1002/app.v114:4
[11] PLUTA M, PAUL M A, ALEXANDRE M, et al. Plasticized polylactide/clay nanocomposites:I:the role of filler content and its surface organo-modification on the physicchemical properties[J]. Journal of Polymer Science Part B: Polymer Physics, 2006, 44(2): 299-311.
doi: 10.1002/(ISSN)1099-0488
[12] ANGIN N, CAYLAK S, ERTAS M, et al. Effect of alkyl ketene dimer on chemical and thermal properties of polylactic acid (PLA) hybrid composites[J]. Sustainable Materials and Technologies, 2022. DOI:10.1016/j.susmat.2021.e00386.
doi: 10.1016/j.susmat.2021.e00386
[13] SUKTHAVORN K, NOOTSUWAN N, WUTTISARN R, et al. Golden glittering biocomposite fibers from poly (lactic acid) and nanosilver-coated titanium dioxide with unique properties; antimicrobial, photocatalytic, and ion-sensing properties[J]. ACS Omega, 2021, 6(25): 16307-16315.
doi: 10.1021/acsomega.1c00657
[14] FARHOODI M, DADASHI S, MOUSAVI S M A, et al. Influence of TiO2 nanoparticle filler on the properties of PET and PLA nanocomposites[J]. Polymer, 2012, 36(6): 745-755.
[15] Al-ITRY R, LAMNAWAR K, MAAZOUZ A, et al. Effect of the simultaneous biaxial stretching on the structural and mechanical properties of PLA, PBAT and their blends at rubbery state[J]. European Polymer Journal, 2015, 68: 288-301.
doi: 10.1016/j.eurpolymj.2015.05.001
[16] XU Y, QIU Y, YAN C, et al. A novel and multifunctional flame retardant nucleating agent towards superior fire safety and crystallization properties for biodegradable poly(lactic acid)[J]. Advanced Powder Technology, 2021, 32(11): 4210-4221.
doi: 10.1016/j.apt.2021.09.026
[17] CLARKSON C M, AZRAK S M E A, CHOWDHURY R, et al. Melt spinning of cellulose nanofibril/polylactic acid (CNF/PLA) composite fibers for high stiffness[J]. ACS Applied Polymer Materials, 2018, 1(2): 160-168.
doi: 10.1021/acsapm.8b00030
[18] MAEDA S. Spirooxazines[M]// Organic Photochromic and Thermochromic Compounds. Boston:Springer, 2002: 85-109.
[1] 段成红, 吴港本, 罗翔鹏. 基于DIGIMAT的碳纤维增强环氧树脂编织复合材料的力学性能[J]. 纺织学报, 2023, 44(07): 126-131.
[2] 谭家玲, 刘佳音, 于伟东, 殷允杰, 王潮霞. 基于SiO2微胶囊的多色谱温敏变色棉织物制备及其性能[J]. 纺织学报, 2023, 44(07): 167-174.
[3] 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167.
[4] 宋洁, 蔡涛, 郑福尔, 郑环达, 郑来久. 涤纶针织鞋材超临界CO2无水染色性能[J]. 纺织学报, 2023, 44(05): 46-53.
[5] 罗海林, 苏健, 金万慧, 傅雅琴. 新型缫丝成筒技术的工艺优化[J]. 纺织学报, 2023, 44(04): 46-54.
[6] 黄伟, 张嘉煜, 张东, 程春祖, 李婷, 吴伟. Lyocell纤维性能表征及其对比分析[J]. 纺织学报, 2023, 44(03): 42-48.
[7] 姜博宸, 王玥, 王富军, 林婧, 郭爱军, 王璐, 关国平. 一体化机械编织食管覆膜支架的力学性能与编织参数关系[J]. 纺织学报, 2023, 44(03): 88-95.
[8] 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43.
[9] 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21.
[10] 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41.
[11] 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87.
[12] 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15.
[13] 杨梦凡, 王潮霞, 殷允杰, 邱华. 棉织物的螺吡喃微胶囊印花及其光致变色性能[J]. 纺织学报, 2022, 43(09): 137-142.
[14] 高峰, 孙燕琳, 肖顺立, 陈文兴, 吕汪洋. 不同牵伸倍率下聚酯复合纤维的微观结构与性能[J]. 纺织学报, 2022, 43(08): 34-39.
[15] 朱燕龙, 谷英姝, 谷潇夏, 董振峰, 汪滨, 张秀芹. 抗菌和防紫外线双效功能聚乳酸/ZnO纤维的制备及其性能[J]. 纺织学报, 2022, 43(08): 40-47.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!