纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 189-196.doi: 10.13475/j.fzxb.20220301101

• 机械与器材 • 上一篇    下一篇

纺织车间定向均流送风口结构设计及其送风性能

高艺华1, 钱付平2(), 王晓维1, 汪虎明3, 高杰3, 陆彪1, 韩云龙1   

  1. 1.安徽工业大学 建筑工程学院, 安徽 马鞍山 243002
    2.安徽工业大学 能源与环境学院,安徽 马鞍山 243002
    3.江苏精亚集团有限公司, 江苏 无锡 214426
  • 收稿日期:2022-03-03 修回日期:2023-04-18 出版日期:2023-08-15 发布日期:2023-09-21
  • 通讯作者: 钱付平(1974—),男,教授,博士。主要研究方向为通风与空气净化。E-mail: fpingqian@163.com
  • 作者简介:高艺华(1998—),女,硕士。主要研究方向为通风与空气净化。

Structural design and air supply effect of directional uniform flow inlet in textile workshop

GAO Yihua1, QIAN Fuping2(), WANG Xiaowei1, WANG Huming3, GAO Jie3, LU Biao1, HAN Yunlong1   

  1. 1. School of Civil Engineering and Architecture, Anhui University of Technology, Ma'anshan, Anhui 243002, China
    2. School of Energy and Environment, Anhui University of Technology, Ma'anshan, Anhui 243002, China
    3. Jiangsu Jingya Group Co., Ltd., Wuxi, Jiangsu 214426, China
  • Received:2022-03-03 Revised:2023-04-18 Published:2023-08-15 Online:2023-09-21

摘要:

为改善某纺织工厂细络联车间温湿度的稳定性及均匀性,提出了一种适用于细络联车间的定向均流送风口,并与复合式混流送风口对比。利用ANSYS Fluent软件对不同送风口下限定区域流场进行数值计算,通过速度、温度、相对湿度及其分布偏差系数评价两者送风效果。在此基础上搭建实验台,验证模拟的正确性。结果表明:当定向均流送风口应用在不同设备布置情况下,可通过调节对开式叶片角度进行风量调节,实现相对湿度调节以达到工艺需求;可通过转动均流导板将气流送至目标区域,实现对设备区域的定向送风。复合式混流送风口和定向均流送风口的速度分布偏差系数均值分别为0.209 3和0.088 9,温度分布偏差系数均值分别为0.015 2和0.008 3,定向均流送风口送风效果更好。

关键词: 纺织车间, 细络联, 空调气流组织, 送风口结构, 数值模拟, 温湿度控制

Abstract:

Objective In response to the increasing requirements for steady temperature and humidity control in textile workshops, this study proposes a directional uniform flow inlet to meet the process requirements of different the workshop equipped with spinning-winding unit based on numerical and experimental studies. A comparison of the new air supply effect with the conventional mixed flow inlet is carried out to provide technical guidance for the actual engineering design.

Method A combination of numerical simulations and experiments was used to analyze the airflow organization of the directional uniform flow inlet and the conventional mixed flow inlet with different equipment arrangements. ANSYS Fluent was used to simulate the flow field in the defined area of the different air supply outlets. The airflow organization of the different air supply outlets was evaluated qualitatively and quantitatively using velocity, temperature, relative humidity, and distribution deviation coefficients. Based on this, an experimental benchmark was set up to compare the airflow effects so as to verify the feasibility of the numerical simulation in the textile workshop and to evaluate the respective airflow effects using the velocity and temperature distribution deviation coefficients.

Results The simulated and experimental results of the temperature distribution for the directional uniform flow inlet showed high agreement with each other, which verified the effectiveness of the numerical model used. In terms of velocity distribution, (Fig. 3, 4), the directional uniform flow inlet had a more even airflow distribution due to the presence of the split blades, ensuring the airflow range meeting the requirements of the working area. The velocity showed a trend of being lower at both ends and higher in the middle, with a relatively gentle curve. The velocity was higher the winder area than in the spinner area in the model, demonstrating the capability of the new design for air volume distribution for a small environment. In contrast, the conventional mixed flow inlet did not have dispersed airflow, and the outflow direction was mostly on both ends. Due to the convergence phenomenon caused by the partial airflow passing through the air-supply structure, the velocity distribution was high at both ends and low in the middle, with considerable fluctuation in the spinner area. The velocity deviation coefficients for the two types of inlet were 0.209 3 and 0.088 9 respectively, indicating that the directional uniform flow inlet had a more even airflow velocity distribution. In terms of the temperature and humidity distribution in the calculation domain (Fig. 5, 6, 7), the mixed flow inlet exhibited local areas with obvious fluctuation in both temperatures and humidity due to unreasonable regulation of the air volume under different equipment heat dissipation situations. The directional uniform flow inlet had a uniform temperature and humidity distribution in each area due to the implementation of the split blades and the equal-flow guide plate. The new design was proven to meet the required environmental conditions of the winder area with low temperature and high humidity and the spinner area with high temperature and low humidity. The average temperature deviation coefficients for the two types of inlet were 0.015 2 and 0.008 3 respectively. Therefore, the directional uniform flow inlet had a more uniform temperature distribution.

Conclusion In summary, the airflow organization of the directional uniform flow inlet proposed in this paper is more uniform than traditional composite type mixed flow inlet. The temperature and humidity in all areas generally meet the required environmental requirements. Its set of the split blades and the equal-flow guide plate can achieve small environmental adjustment and directional air supply under different equipment arrangements. Its average deviation coefficient of velocity and temperature is smaller than that of the conventional mixed flow inlet, so the directional uniform flow inlet will have a better air supply effect in engineering applications.

Key words: textile workshop, spinning-winding unit, air-conditioning, air outlet structure, numerical simulation, temperature and humidity control

中图分类号: 

  • TH12

图1

定向均流送风口及复合式混流送风口几何模型图 1—对开式叶片1;2—方杆;3—条形均流板;4—对开式叶片2;5—送风箱;6—悬吊支架;7—侧挡板;8—均流导板。"

图2

竖直面及水平面4组测点位置示意图"

图3

Z=1 m截面送风口速度矢量图"

图4

2种送风口下各测点速度分布"

图5

2种送风口下各测点温度分布"

图6

2种送风口下各测点相对湿度分布"

图7

3种计算模型不同高度的水平面温度分布云图 a: 细-络模型距地面1.5 m处; b: 细-络模型距地面2.0 m处; c: 全细纱机模型距地面2.0 m处; d: 全络筒机模型距地面1.5 m处"

图8

设备表面相对湿度分布云图 a: 细-络模型络筒机; b: 细-络模型细纱机; c: 全细纱机模型中间位置细纱机; d: 全细纱机模型两侧位置细纱机;e: 全络筒机模型中间位置络筒机; f: 全络筒机模型两侧位置络筒机。"

图9

测点在不同送风速度下的速度值"

图10

测点在不同送风温度下的温度值"

[1] 杨纪超. 满怀信心迎接中国纺织工业新时代[J]. 棉纺织技术, 2020, 48(1): 2-3.
YANG jichao. Meet a new era in China's textile industry with confidence[J]. Cotton Textile Technology, 2022, 48(1): 2-3.
[2] WANG L, LI Y, HE W J E. The energy footprint of China's textile industry: perspectives from decoupling and decomposition analysis[J]. Energies, 2017, 10(10): 1461-1471.
doi: 10.3390/en10101461
[3] ZHAO H. Annual economic report (2019) for China's technical textile industry in brief[J]. China Textile, 2020, 15(2): 32-33.
[4] 张晓静, 王仕元, 周义德, 等. 新型细纱车间空调气流组织设计[J]. 上海纺织科技, 2021, 49 (1):61-64.
ZHANG Xiaojing, WANG Shiyuan, ZHOU Yide, et al. Air conditioning organization design for new spinning workshop[J]. Shanghai Textile Science & Technology, 2021, 49 (1): 61-64.
[5] 周铸, 黄江涛, 黄勇, 等. CFD技术在航空工程领域的应用、挑战与发展[J]. 航空学报, 2017, 38(3): 6-30.
ZHOU Zhu, HUANG Jiangtao, HUANG Yong, et al. CFD technology in aeronautic engineering field: applications, challenges and development[J]. Acta Aeronautica et Astronautica Sinica, 2017, 38(3): 6-30.
[6] ELDEGWY A, KHALIL E E. Simulation of air flow pattern in a room with ceiling mounted circulator[C]// 55th AIAA Aerospace Sciences Meeting. Texas: AIAA Science and Technology Forum, 2017: 9-13.
[7] AL-HABABI T, KHALIL E E. Numerical investigations of flow patterns and thermal comfort in air-conditioned gymnastic sport facility[C]// 54th AIAA Aerospace Sciences Meeting. California: AIAA Science and Technology Forum, 2016: 1-7.
[8] THONGSRI J. A successful CFD-based solution to a water condensation problem in a hard disk drive factory[J]. IEEE Access, 2017, 5: 10795-10804.
doi: 10.1109/ACCESS.2017.2708138
[9] 王晓维, 汪虎明, 高杰, 等. 基于CFD技术纺织空调送风口结构的优化设计[J]. 流体机械, 2020, 48(8): 65-70.
doi: 10.3969/j.issn.1005-0329.2020.08.012
WANG Xiaowei, WANG Minghu, GAO Jie, et al. Optimization design of air supply structure of textile air conditioning based on CFD technology[J]. Fluid Machinery, 2020, 48(8): 65-70.
doi: 10.3969/j.issn.1005-0329.2020.08.012
[10] 杨瑞梁, 周义德, 高龙, 等. 多层面可调混流空气分布器: CN200710189782.8[P]. 2003-03-19.
YANG Ruiliang, ZHOU Yide, GAO Long, et al. Multi-level adjustable mixed flow air distributor: CN 200710189782.8[P]. 2003-03-19.
[11] 夏强. 纺织空调复合式混流送风口: CN201720063417.1[P]. 2017-09-12.
XIA Qiang. Textile air conditioning composite mixed flow air supply: CN 201720063417.1[P]. 2017-09-12.
[12] 惠晶. 细纱车间温湿度、回潮率分析及改进[J]. 天津纺织科技, 2018, 5(2): 31-33.
HUI Jing. Analysis and rectification suggestions of temperature and humidity, moisture regain rate in spinning workshop[J]. Tianjin Textile Science & Technology, 2018, 5(2): 31-33.
[13] AHMED A, MOHAMED H. MOHAMEDA M F. Optimal design of a louver face ceiling diffuser using CFD to improve occupant's thermal comfort[J]. Journal of Building Engineering, 2017, 11(5): 134-157.
doi: 10.1016/j.jobe.2017.04.009
[14] SU Y X, WAN X. Numerical simulation of the natural ventilation in work-shop with different air inlet openings[J]. Advanced Materials Research, 2011, 250-253: 3187-3190.
[15] El-AMIN M F, SUN S, HEIDEMANN W, et al. Analysis of a turbulent buoyant confined jet modeled using realizable k-ε model[J]. Heat and Mass Transfer, 2010, 46(8): 943-960.
doi: 10.1007/s00231-010-0625-3
[16] ANSYS I. Ansys Fluent theory guide[M]. Pittsburgh: ANSYS Inc, 2011: 197.
[17] CHAPMAN S, COWLING T G. The mathematical theory of non-uniform gases: an account of the kinetic theory of viscosity, thermal conduction and diffusion in gases[J]. Mathematical Gazette, 1952, 38: 323.
[18] 赵荣义, 范存养, 薛殿华, 等. 空气调节[M]. 4版. 北京: 中国建筑工业出版社, 2009, 182.
ZHAO Rongyi, FAN Cunyang, XUE Dianhua, et al. Air conditioning[M]. 4th ed. Beijing: China Construction Industry Press, 2009: 182.
[1] 陆伟健, 屠佳佳, 王俊茹, 韩思捷, 史伟民. 基于改进残差网络的空纱筒识别模型[J]. 纺织学报, 2024, 45(01): 194-202.
[2] 王青, 梁高翔, 殷俊清, 盛晓超, 吕绪山, 党帅. 新型气流牵伸通道结构模型的构建与性能分析[J]. 纺织学报, 2023, 44(11): 52-60.
[3] 杨孟想, 刘让同, 李亮, 刘淑萍, 李淑静. 机织物的热传递与强热条件下热防护性能[J]. 纺织学报, 2023, 44(11): 74-82.
[4] 连力平, 杨鹏程, 余子健, 龙阳昭, 肖渊. 织物表面激光打标工艺参数的数值模拟及选取方法[J]. 纺织学报, 2023, 44(06): 121-128.
[5] 樊百林, 张昌睿, 郭佳华, 黄钢汉, 尉国梁. 基于Flow Simulation的喷气织机辅助喷嘴喷孔结构优化[J]. 纺织学报, 2023, 44(06): 200-206.
[6] 缪莹, 熊诗嫚, 郑敏博, 唐建东, 张慧霞, 丁彩玲, 夏治刚. 高光洁处理对聚酰亚胺短纤纱及其织物性能的影响[J]. 纺织学报, 2023, 44(02): 118-127.
[7] 孙戬, 姜博艺, 张守京, 胡胜. 异纤分拣机剔除喷管结构参数对其性能的影响[J]. 纺织学报, 2022, 43(10): 169-175.
[8] 诸文旎, 徐润楠, 胡蝶飞, 姚菊明, MILITKY Jiri, KREMENAKOVA Dana, 祝国成. 基于随机算法的纤维材料过滤特性仿真分析[J]. 纺织学报, 2022, 43(09): 76-81.
[9] 余玉坤, 孙玥, 侯珏, 刘正, 易洁伦. 单层服装间隙量的动态有限元模型构建与仿真[J]. 纺织学报, 2022, 43(04): 124-132.
[10] 刘宜胜, 周鑫磊, 刘丹丹. 气动折入边装置中纱线初始位置对折边效果的影响[J]. 纺织学报, 2022, 43(03): 168-175.
[11] 钱淼, 胡恒蝶, 向忠, 马成章, 胡旭东. 非均布热管换热器的流动及其传热性能[J]. 纺织学报, 2021, 42(12): 151-158.
[12] 周浩邦, 沈敏, 余联庆, 肖世超. 辅助喷嘴结构对喷气织机异形筘内合成流场特征的影响[J]. 纺织学报, 2021, 42(11): 166-172.
[13] 牟浩蕾, 解江, 裴惠, 冯振宇, 耿宏章. 芳纶织物及其包容环的弹道冲击与数值模拟[J]. 纺织学报, 2021, 42(11): 56-63.
[14] 王玉栋, 姬长春, 王新厚, 高晓平. 新型熔喷气流模头的设计与数值分析[J]. 纺织学报, 2021, 42(07): 95-100.
[15] 史倩倩, 王姜, 张玉泽, 林惠婷, 汪军. 转杯纺纱器气流场形成机制的数值分析[J]. 纺织学报, 2021, 42(02): 180-184.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!