纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 18-25.doi: 10.13475/j.fzxb.20220301301

• 纤维材料 • 上一篇    下一篇

超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能

柳敦雷1, 陆佳颖1, 薛甜甜2,3, 樊玮1,2,3(), 刘天西2,3   

  1. 1.江苏恒科新材料有限公司, 江苏 南通 226361
    2.东华大学 材料科学与工程学院, 上海 201620
    3.东华大学 纤维材料改性国家重点实验室, 上海 201620
  • 收稿日期:2022-03-03 修回日期:2023-02-27 出版日期:2023-07-15 发布日期:2023-08-10
  • 通讯作者: 樊玮(1990—),女,副研究员,博士。主要研究方向为气凝胶功能复合材料。E-mail: weifan@dhu.edu.cn
  • 作者简介:柳敦雷(1972—),男,高级工程师,硕士。主要研究方向为聚酯纤维材料改性。
  • 基金资助:
    国家自然科学基金项目(52073053)

Preparation and properties of superhydrophobic thermal insulating polyester nanofiber/silica aerogel composite membranes

LIU Dunlei1, LU Jiaying1, XUE Tiantian2,3, FAN Wei1,2,3(), LIU Tianxi2,3   

  1. 1. Jiangsu Hengke New Material Co., Ltd., Nantong, Jiangsu 226361, China
    2. College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
    3. State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China
  • Received:2022-03-03 Revised:2023-02-27 Published:2023-07-15 Online:2023-08-10

摘要:

针对聚酯纳米纤维膜亲水(接触角为17°)、热导率高以及热稳定性差的问题,在聚酯纳米纤维膜内部原位缩聚二氧化硅湿凝胶,经疏水处理和常压干燥制备了超疏水聚酯纳米纤维/二氧化硅气凝胶复合膜,探究了复合膜在高温潮湿环境中的隔热性能。结果表明:在150 ℃环境中,当乙醇与正硅酸四乙酯量比为10∶1时制备的气凝胶复合膜的热导率仅有66.5 mW/(m·K),而纯聚酯纳米纤维膜发生严重变形,且热导率高达135.6 mW/(m·K);同时该复合膜的超疏水性(水接触角为153°)可有效阻止其对水分子的吸附,在50 ℃、100%高湿环境中的热导率为74.5 mW/(m·K),而纯聚酯纳米纤维膜的热导率高达170.6 mW/(m·K)。该复合膜有望用于高温高湿环境的隔热材料中,在高效热防护服装中具有良好的应用前景。

关键词: 聚酯, 纳米纤维, 二氧化硅气凝胶, 超疏水复合膜, 隔热材料, 静电纺丝

Abstract:

Objective Polyester fiber has the advantages of high strength, high elasticity, good conformability and low cost, which occupies an important position in the modern textile industry. Especially, polyester nanofiber membranes prepared by electro-spinning have a three-dimensional porous structure, excellent air permeability and high production efficiency, and received extensive attention. However, polyester nanofiber membranes have high hydrophilicity, high thermal conductivity and poor thermal stability, which are regarded as disadvantages. Therefore, it is of great importance to develop thermal insulating polyester membranes with low thermal conductivity, superhydrophobicity and flexibility for the thermal protection of workers in extreme hot and humid environments.

Method Superhydrophobic thermal insulating polyester nanofiber/silica (PETS) aerogel composite membranes were prepared by in-situ condensation of silica aerogel in the polyester nanofiber, followed by hydrophobic treatment, solvent exchange and ambient pressure drying. The structural and mechanical properties of PETS aerogel composite membrane were characterized and analyzed by scanning electron microscopy, and a universal tensile testing machine. Thermal insulating properties of PETS aerogel composite membranes were characterized by infrared thermal imager and hot disk thermal analyzer in humid environments.

Results PET and PETS aerogel composite membranes were shown to have the construction of silica aerogels in the polyester nanofibers created by in-situ condensation (Fig. 2). Within the polyester nanofiber membrane, the silica aerogel gradually developed a continuous three-dimensional porous structure as the molar ratio of ethanol to tetraethyl orthosilicate increase to 10∶1 (Fig. 4). As the content of silica aerogel increased, the tensile break strength of PETS aerogel composite membrane demonstrated a gradually decrease. Notably, the PETS10 aerogel composite membrane had a stable structure in high temperature environment because the silica aerogel was tightly bound to the surface of PET nanofibers as an inorganic protective layer, which effectively inhibited the structural collapse of polyester nanofibers. Furthermore, the thermal conductivity of PETS10 aerogel composite membrane was only 66.5 mW/(m·K) at 150 ℃, while the pure polyester nanofiber membrane was seriously deformed and its thermal conductivity was as high as 135.6 mW/(m·K) (Fig. 7). This was attributed to the three-dimensional nanopore structure of silica aerogel, which effectively inhibited heat transfer and endued the PETS aerogel composite membrane excellent thermal insulating properties. Benefiting from the replacement of hydrophilic Si—OH by hydrophobic Si—CH3 in silica wet gels, the PETS aerogel composite membrane exhibited superhydrophobi-city (water contact angle of 153°) compared to the polyester nanofiber membrane (water contact angle of 17°) (Fig. 8). Therefore, the superhydrophobic PETS could effectively prevent the adsorption of water molecules, and its thermal conductivity was 74.5 mW/(m·K) at 50 ℃ and 100% high humidity, while the thermal conductivity of pure polyester nanofiber membrane was as high as 170.6 mW/(m·K) (Fig. 9). Compared with silica aerogel composites previously reported, PETS aerogel composite membrane showed a lower thermal conductivity, indicating its great potential for thermal insulation in high-temperature and humid environments.

Conclusion The PETS aerogel composite membrane is found to exhibit excellent temperature resistance, superhydrophobicity, and thermal insulation capabilities. The interfacial bonding between SiO2 aerogel and PET nanofiber can be optimized by controlling the functional groups of the silica wet gel, thus further optimizing the mechanical properties of the PETS aerogel composite membrane. Furthermore, this strategy can also be used for modifing other nanofiber membranes with good generalizability.

Key words: polyester, nanofiber, silica aerogel, superhydrophobic composite membrane, thermal insulating material, electro-spinning

中图分类号: 

  • TB332

图1

PETS气凝胶复合膜的制备流程示意图"

图2

PET和PETS10气凝胶复合膜的红外光谱图"

图3

PETS气凝胶复合膜的光学和红外热成像照片"

图4

PET和PETS气凝胶复合膜的扫描电镜照片"

图5

PET和PETS气凝胶复合膜的TG和DSC曲线"

图6

PET和PETS气凝胶复合膜的密度和应力-应变曲线"

图7

PET和PETS10气凝胶复合膜的隔热性能"

图8

PET和PETS10气凝胶复合膜的水接触角"

图9

PET和PETS气凝胶复合膜在不同相对湿度下的热导率以及与其它材料的隔热性能对比"

[1] PENG Yucan, CUI Yi. Advanced textiles for personal thermal management and energy[J]. Joule, 2020, 4(4): 724-742.
doi: 10.1016/j.joule.2020.02.011
[2] 黄效华, 周家良, 池姗, 等. 聚酯/二氧化硅/橙活性成分改性纤维的制备及其性能[J]. 纺织学报, 2021, 42 (12): 21-27.
HUANG Xiaohua, ZHOU Jialiang, CHI Shan, et al. Preparation and properties of polyester/silica/orange active ingredient fiber[J]. Journal of Textile Research, 2021, 42 (12): 21-27.
[3] WU Xiangji, GAO Weihong, SHEN Xiaohong, et al. Preparation and characterization of taichi masterbatch/polyester functional composite fiber[J]. Textile Research Journal, 2020, 90 (7/8): 731-743.
doi: 10.1177/0040517519878796
[4] DUZYER Sebnem, HOCHENBERGER Asli, ZUSSMAN Eyal. Characterization of solvent-spun polyester nanofibers[J]. Journal of Applied Polymer Science, 2011, 120 (2): 759-769.
doi: 10.1002/app.v120.2
[5] MAZROUEI-SEBDANI Zahra, KHODDAMI Akbar, HADADZADEH Hassan, et al. Synthesis and performance evaluation of the aerogel-filled PET nanofiber assemblies prepared by electro-spinning[J]. RSC Advances, 2015, 5 (17): 12830-12842.
doi: 10.1039/C4RA15297B
[6] HU Wenwen, SHI Xianying, GAO Menghang, et al. Light-actuated shape memory and self-healing phase change composites supported by MXene/waterborne polyurethane aerogel for superior solar-thermal energy storage[J]. Composites Communications, 2021.DOI: 10.1016/j.coco.2021.100980.
doi: 10.1016/j.coco.2021.100980
[7] YOU Haining, ZHAO Qinghua, MEI Tao, et al. Self-reinforced polymer nanofiber aerogels for multifunctional applications[J]. Macromolecular Materials and Engineering, 2022. DOI: 10.1002/mame.202100971.
doi: 10.1002/mame.202100971
[8] SHAFI Sameera, TIAN Jiaqi, NAVIK Rahul, et al. Fume silica improves the insulating and mechanical performance of silica aerogel/glass fiber composite[J]. The Journal of Supercritical Fluids, 2019, 148: 9-15.
doi: 10.1016/j.supflu.2019.02.027
[9] OH Kyungwha, KIM Dukki, KIM Seonghun. Ultra-porous flexible PET/aerogel blanket for sound absorption and thermal insulation[J]. Fibers and Polymers, 2009, 10 (5): 731-737.
doi: 10.1007/s12221-010-0731-3
[10] 江渊, 吴立衡. 红外光谱在聚对苯二甲酸乙二醇酯纤维结构研究中的应用[J]. 高分子通报, 2001, 14(2): 62-68.
JIANG Yuan, WU Liheng. Application of infrared spectroscopy in the structural study of poly (ethylene terephthalate) fibers[J]. Chinese Polymer Bulletin, 2001, 14(2):62-68.
[11] ZHAO Shanyu, SIQUEIRA Gilberto, DRDOVA Sarka, et al. Additive manufacturing of silica aerogels[J]. Nature, 2020, 584 (7821): 387-392.
doi: 10.1038/s41586-020-2594-0
[12] JAHANGIRI Mohsen, JAFARI Seyedhassan, KHONAKDAR Hosseinali, et al. Preparation of PET/clay nanocomposites via in situ polymerization in the presence of monomer-activated organoclay[J]. Journal of Vinyl and Additive Technology, 2015, 21 (1): 70-78.
doi: 10.1002/vnl.v21.1
[13] YANG Fan, ZHAO Xingyu, XUE Tiantian, et al. Superhydrophobic polyvinylidene fluoride/polyimide nanofiber composite aerogels for thermal insulation under extremely humid and hot environment[J]. Science China Materials, 2021, 64 (5): 1267-1277.
doi: 10.1007/s40843-020-1518-4
[14] WANG Jieyu, PETIT Donald, REN Shenqiang. Transparent thermal insulation silica aerogels[J]. Nanoscale Advances, 2020, 2 (12): 5504-5515.
doi: 10.1039/d0na00655f pmid: 36133881
[15] JINDE Prashant, NAIK Rohit, RAKSHIT Arup. Characterization and synthesis of polyester and viscose nonwovens fabrics embedded with nanoporous amorphous silica[J]. Journal of The Textile Institute, 2019, 110 (7): 972-979.
doi: 10.1080/00405000.2018.1534305
[16] HUANG Chenhung, LIN Jiahorng, CHUANG Yuchun. Manufacturing process and property evaluation of sound-absorbing and thermal-insulating polyester fiber/polypropylene/thermoplastic polyurethane composite board[J]. Journal of Industrial Textiles, 2014, 43 (4): 627-640.
doi: 10.1177/1528083712471697
[17] CAI Jie, LIU Shilin, FENG Jiao, et al. Cellulose-silica nanocomposite aerogels by in-situ formation of silica in cellulose gel[J]. Angewandte Chemie International Edition, 2012, 51 (9): 2076-2079.
doi: 10.1002/anie.201105730
[18] TIAN Jiaqi, SHAFI Sameera, TAN Huijun, et al. Mechanical and thermal-insulating performance of silica aerogel enhanced jointly with glass fiber and fumed silica by a facile compressing technique[J]. Chemical Physics Letters, 2020. DOI:10.1016/j.cplett.2019.136950.
doi: 10.1016/j.cplett.2019.136950
[19] POONYAKAN Artid, RACHAKORNKIJ Manaskorn, WECHARATANA Methi, et al. Potential use of plastic wastes for low thermal conductivity concrete[J]. Materials, 2018. DOI: 10.3390/ma11101938.
doi: 10.3390/ma11101938
[1] 尚小愉, 朱坚, 王滢, 张先明, 陈文兴. 侧基含磷阻燃共聚酯的制备及其固相增黏反应[J]. 纺织学报, 2023, 44(07): 1-9.
[2] 李龙, 张弦, 吴磊. 导电纱线制备方法与应用的研究进展[J]. 纺织学报, 2023, 44(07): 214-221.
[3] 张晋, 张林军, 解云川, 王健, 贾寅峰, 路涛, 张志成. 防护口罩用改性长效聚(偏氟乙烯-三氟乙烯)压电纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 26-32.
[4] 王玉周, 周梦洁, 姜圆金, 陈家本, 李玥. 偕胺肟化聚丙烯腈纳米纤维膜的制备与油水乳液分离性能[J]. 纺织学报, 2023, 44(07): 42-49.
[5] 吕婧, 刘增伟, 程青青, 张学同. 芳纶纳米纤维气凝胶的研究进展[J]. 纺织学报, 2023, 44(06): 10-20.
[6] 王青弘, 王迎, 郝新敏, 郭亚飞, 王美慧. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(06): 144-151.
[7] 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224.
[8] 史豪秦, 于影, 左雨欣, 刘宜胜, 左春柽. SnO2/聚乙烯吡咯烷酮防腐薄膜的制备及其在柔性铝-空气电池中的应用[J]. 纺织学报, 2023, 44(06): 33-40.
[9] 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49.
[10] 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56.
[11] 苏旭中, 梁巧敏, 王汇锋, 张娣, 崔益怀. 棉/生物基弹性聚酯纤维混纺针织物的服用性能[J]. 纺织学报, 2023, 44(05): 119-124.
[12] 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76.
[13] 胡蝶飞, 王琰, 姚菊明, 祝国成. 纳米纤维复合结构空气过滤材料性能研究[J]. 纺织学报, 2023, 44(05): 77-83.
[14] 宋伟广, 王冬, 杜长森, 梁栋, 付少海. 原液着色聚酯纤维原位聚合用自分散纳米炭黑的制备及其性能[J]. 纺织学报, 2023, 44(04): 115-123.
[15] 周堂, 汪邓兵, 赵磊, 刘祖一, 凤权. 负载WO3的细菌纤维素/Au膜制备及其催化性能[J]. 纺织学报, 2023, 44(04): 16-23.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!