纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 26-33.doi: 10.13475/j.fzxb.20220302001

• 纤维材料 • 上一篇    下一篇

聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能

施静雅1, 王慧佳1, 易雨青1, 李妮1,2,3()   

  1. 1.浙江理工大学 纺织科学与工程学院(国际丝绸学院), 浙江 杭州 310018
    2.浙江省智能织物与柔性互联重点实验室, 浙江 杭州 310018
    3.浙江理工大学 先进纺织材料与制备技术教育部重点实验室, 浙江 杭州 310018
  • 收稿日期:2022-03-04 修回日期:2022-06-06 出版日期:2023-08-15 发布日期:2023-09-21
  • 通讯作者: 李妮(1979—),女,副教授,博士。主要研究方向为纳米纤维膜的功能改性。E-mail:lini@zstu.edu.cn
  • 作者简介:施静雅(1998—),女,硕士生。主要研究方向为静电纺纳米纤维过滤材料。
  • 基金资助:
    浙江省新苗人才计划项目(2021R406073)

Preparation and filtration of polyurethane/polyvinyl butyral composite nanofiber membrane

SHI Jingya1, WANG Huijia1, YI Yuqing1, LI Ni1,2,3()   

  1. 1. College of Textile Science and Engineering(International Institute of Silk), Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. Key Laboratory of Intelligent Textile and Flexible Interconnection of Zhejiang Province, Hangzhou, Zhejiang 310018, China
    3. Key Laboratory of Advanced Textile Materials and Manufacturing Technology, Ministry of Education, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
  • Received:2022-03-04 Revised:2022-06-06 Published:2023-08-15 Online:2023-09-21

摘要:

为减少人类生产活动排放的PM0.3悬浮颗粒对生态环境和公众健康产生的危害,以聚氨酯/聚乙烯醇缩丁醛(PU/PVB)为原料,采用静电纺丝方法制备了一种新型复合纳米纤维膜。通过改变PVB在复合纳米纤维膜中的质量占比来调控复合纳米纤维膜的形貌结构、化学结构、力学性能、热学性能、透气性能和过滤性能。结果表明:PVB的加入有效减小了PU纳米纤维的平均直径;当PU和PVB的质量比为8∶2时,复合纳米纤维膜的平均直径为385 nm,相比于PU纳米纤维膜减少51%;断裂应力达到16 MPa,相比于PU纳米纤维膜增加45%,断裂应变为148%,具有优异力学性能;该复合纳米纤维膜具有良好的热稳定性,起始分解温度为289.37 ℃,其对PM0.3的过滤效率为98.851%,过滤压降为181.7 Pa,品质因子为0.024 6 Pa-1,是一种理想的PM0.3悬浮颗粒过滤介质。

关键词: 聚氨酯, 聚乙烯醇缩丁醛, 静电纺丝, 纳米纤维, 力学性能, 空气过滤

Abstract:

Objective Air pollution is increasingly a serious global problem. Traditional filtration media are reported to have insufficient mechanical properties and low filtration efficiency. Therefore, in order to reduce the ecological and public health hazards of PM0.3 suspended particles emitted from human production activities, the preparation and property evaluation of the nanofiber membrane with improved mechanical properties and filtration efficiency were reported in the paper.

Method Polyurethane (PU) with outstanding flexibility was selected as electrospinning polymer material and the solution mass fraction was fixed at 14%. Polyvinyl butyral (PVB) was used as additives to improve morphology, structure, and properties of PU nanofiber membrane. Different PU/PVB composite fiber membrane was fabricated by changing the mass ratios (8∶2, 7∶3, 6∶4) of PU and PVB. After a series of tests such as scanning electron microscope, Fourier transform infrared spectroscope, thermogravimetric analyzer, differential scanning calorimeter, stretching and filtration, the effects of PVB percentage on the morphological structure, chemical structure, mechanical properties, thermal properties, and filtration properties of PU/PVB composite nanofiber membranes were discussed.

Results The addition of PVB not only increased the spinnability of the fiber solution, but also improved the morphology of the nanofibers(Fig. 1). Under different ratio conditions (8∶2, 7∶3, 6∶4), the average diameter of the fibers was all less than 400 nm, with PU/PVB-8∶2 having the largest average diameter of 385 nm. PU/PVB composite nanofiber membranes presented similar characteristic peaks with PU nanofiber membrane, and the decrease of PU mass share in electrospinning solution leaded to a decreasing trend of the characteristic peaks at 3 318 cm-1, 1 700-1 600 cm-1 and 1 100 cm-1(Fig. 2). PU/PVB composite nanofiber membranes also showed similar decomposition trends and characteristic peaks with those of PU membranes (Fig. 3). These indicated that the addition of PVB did not change chemical structure of PU in the composite membranes. The decomposition onset temperature of PU nanofiber membrane was 249.49 ℃, while the temperature of PU/PVB composite nanofiber membranes was higher than 280 ℃(Tab. 1), indicating that the addition of PVB increased the thermal stability of PU nanofiber membrane. At this time, the introduction of PVB effectively promoted the mixing of molecules within the blend and thus moderating the thermodynamic process and enhancing the thermal stability of the composite nanofiber membranes(Fig. 4). PU nanofiber membrane exhibited a fracture stress of 11 MPa and a fracture strain of 189%, while PU/PVB-8∶2 nanofiber membrane showed mechanical properties with a fracture stress of 16 MPa and a fracture strain of 148%. At this point, the elastic modulus of the composite nanofiber membrane reached a maximum of 8 MPa(Fig. 5), indicating that the mechanical properties of the composite nanofiber membrane were optimal at this mass ratio. The average pore size and porosity of PU nanofiber membrane was 7.24 μm and 55% separately. PU/PVB nanofiber membranes showed decreased pore size ranging from 1.57 to 2.95 μm and increased porosity ranging from 77% to 81% (Tab. 2). For various PU/PVB nanofiber membranes, the pore size of PU/PVB-8∶2 was only 1.78 μm and the pore size distribution was uniform. Compared to the permeability of PU fiber membrane ((63.39±1.83) mm/s), the permeability of the composite nanofiber membranes ranged from 29.04 to 37.57 mm/s. The QF values of PU/PVB composite nanofiber membranes were all greater than 0.02 Pa-1, and the filtration efficiencies for PM0.3 particles were all greater than 95%.

Conclusion The addition of PVB effectively reduces the diameter of the nanofiber and the pore size of nanofibers membranes, increases the porosity of the nanofiber membranes and improves the thermal, mechanical and filtration properties of the nanofiber membranes. When the mass ratio of PU to PVB is 8∶2, the average diameter of the fibers is 385 nm, the fracture stress is 16 MPa, the fracture strain is 148% and initial decomposition temperature is 289.37 ℃. The composite nanofiber membrane also shows the smallest pore size of 1.78 μm, a permeability of 29.37 mm/s, a filtration efficiency of 98.851% for PM0.3, a resistance pressure drop of 181.7 Pa, and a quality factor of 0.024 6 Pa-1,indicating that it is an ideal medium for microfiltration.

Key words: polyurethane, polyvinyl butyral, electrospinning, nanofiber, mechanical performance, air filtration

中图分类号: 

  • TS102.5

图1

静电纺纳米纤维膜的SEM照片(×2 000)"

图2

静电纺纳米纤维膜的红外光谱图"

图3

静电纺纳米纤维膜的TG和DTG曲线"

表1

静电纺纳米纤维膜热力学温度"

样品名称 Ti Tmax Tf Tg
PU 249.49 431.49 471.69 -
PU/PVB-8∶2 289.37 401.27 471.97 41.09
PU/PVB-7∶3 285.88 421.68 464.28 41.19
PU/PVB-6∶4 282.11 412.11 457.57 53.75
PVB 292.97 401.27 465.37 53.57

图4

静电纺纳米纤维膜的DSC曲线"

图5

静电纺纳米纤维膜的力学性能"

表2

静电纺纳米纤维膜孔径、透气性能和过滤性能"

样品名称 最大孔径/
μm
最小孔径/
μm
平均孔径/
μm
孔隙率/
%
透气率/
(mm·s-1)
过滤压
降/Pa
过滤效
率/%
品质因子/
Pa-1
PU 11.94 1.90 7.24±4.55 55 63.39±1.83 71.8 74.135 0.018 8
PU/PVB-8∶2 1.96 1.46 1.78±0.21 77 29.37±0.33 181.7 98.851 0.024 6
PU/PVB-7∶3 2.53 1.56 1.94±0.25 80 31.74±0.54 155.4 96.365 0.021 3
PU/PVB-6∶4 3.49 1.89 2.46±0.49 81 35.96±1.61 125.3 95.868 0.025 4
[1] ZHANG R, WANG H, ZHU Z, et al. Fabrication of nanofiber filters for electret air conditioning filter via a multi-needle electrospinning[J]. AIP Advances, 2020, 10(10):1-11.
[2] 刘朝军, 刘俊杰, 丁伊可, 等. 静电纺丝法制备高效空气过滤材料的研究进展[J]. 纺织学报, 2019, 40(6):134-142.
LIU Chaojun, LIU Junjie, DING Yike, et al. Research progress in preparation of high-efficiency air filter materials by electrospinning[J]. Journal of Textile Research, 2019, 40(6): 134-142.
[3] 彭孟娜, 马建伟. 静电纺纳米纤维材料的发展现状与应用[J]. 产业用纺织品, 2018, 36(1):1-5.
PENG Mengna, MA Jianwei. Development status and application of electrospun nanofiber materials[J]. Technical Textiles, 2018, 36(1):1-5.
[4] ZUO F, ZHANG S, LIU H, et al. Free-standing polyurethane nanofiber/nets air filters for effective PM capture[J]. Small, 2017, 13(46):1-11.
[5] 洪贤良, 陈小晖, 张建青, 等. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(6):174-182.
HONG Xianliang, CHEN Xiaohui, ZHANG Jianqing, et al. Research progress in preparation of hierarchically structured air filter materials by electrospinning[J]. Journal of Textile Research, 2020, 41(6):174-182.
doi: 10.1177/004051757104100215
[6] LU T, CUI J, QU Q, et al. Multistructured electrospun nanofibers for air filtration:a review[J]. ACS Appl Mater Interfaces, 2021, 13(20):23293-23313.
doi: 10.1021/acsami.1c06520
[7] ZHU M, HAN J, WANG F, et al. Electrospun nanofibers membranes for effective air filtration[J]. Macromolecular Materials and Engineering, 2017, 302(1):1-27.
[8] YANG X, PU Y, ZHANG Y, et al. Multifunctional composite membrane based on BaTiO3@PU/PSA nanofibers for high-efficiency PM2.5 removal[J]. J Hazard Mater, 2020, 391(5):1-11.
[9] CUI Y, JIANG Z, XU C, et al. Preparation filtration and photocatalytic properties of PAN@g-C3N4 fibrous membranes by electrospinning[J]. RSC Advances, 2021, 11(32):19579-19586.
doi: 10.1039/D1RA03234H
[10] LIU Y, JIA C, ZHANG H, et al. Free-standing ultrafine nanofiber papers with high PM0.3 mechanical filtration efficiency by scalable blow and electro-blow spin-ning[J]. ACS Appl Mater Interfaces, 2021, 13(29):34773-34781.
doi: 10.1021/acsami.1c04253
[11] OPALKOVA Siskova A, MOSNACKOVA K, HRUZA J, et al. Electrospun poly(ethylene terephthalate)/silk fibroin composite for filtration application[J]. Polymers (Basel), 2021, 13(15):1-23.
doi: 10.3390/polym13010001
[12] NA W, RAZA A, YANG S, et al. Tortuously structured polyvinyl chloride/polyurethane fibrous membranes for high-efficiency fine particulate filtration[J]. J Colloid Interface, 2013, 398(15):240-246.
doi: 10.1016/j.jcis.2013.02.019
[13] LIU F, LI M, SHAO W, et al. Preparation of a polyurethane electret nanofiber membrane and its air-filtration performance[J]. Journal of Colloid and Interface Science, 2019, 557(1):318-327.
doi: 10.1016/j.jcis.2019.08.099
[14] 蒋攀. 高湿/油性环境中驻极性能稳定的纳米纤维膜的制备及其PM2.5过滤性能研究[D]. 上海: 东华大学, 2018:1-56.
JIANG Pan. Moisture and oily molecules stable nanofibrous electret membranes for effectively capturing PM2.5[D]. Shanghai: Donghua University, 2018:1-56.
[15] ZAKARIA M, SHIBAHARA K, NAKANE K. Melt-electrospun polyethylene nanofiber obtained from polyethylene/polyvinyl butyral blend film[J]. Polymers, 2020, 12(2):1-12.
doi: 10.3390/polym12010001
[16] 李玉瑶. 高孔隙率非织造纤维材料的制备及空气过滤应用研究[D]. 上海: 东华大学, 2020:1-120.
LI Yuyao. Preparation of fibrous nonwovens with high porosity and their application in air filtration[D]. Shanghai: Donghua University, 2020:1-120.
[17] 顾海宏. PU纳米纤维多孔膜的超疏水改性和热湿传递CFD模拟的研究[D]. 杭州: 浙江理工大学, 2021:1-107.
GU Haihong. Investigation on superhydrophobic modification and CFD simulation for heat and water vapor transfer of PU nanofiber porous membrane[D]. Hangzhou: Zhejiang Sci-Tech University, 2021:1-107.
[18] WANG L, GAO Y, XIONG J, et al. Biodegradable and high-performance multiscale structured nanofiber membrane as mask filter media via poly(lactic acid) electrospinning[J]. J Colloid Interface Sci, 2022, 606(2):961-970.
doi: 10.1016/j.jcis.2021.08.079
[19] KIM M H, LEE W J, LEE D H, et al. Development of nanofiber reinforced double layered cabin air filter using novel upward mass production electrospinning set up[J]. J Nanosci Nanotechnol, 2018, 18(3):2132-2136.
doi: 10.1166/jnn.2018.14970 pmid: 29448729
[20] AKANBI M J, JAYASINGHE S N, WOJCIK A. Characterisation of electrospun PS/PU polymer blend fiber mat for oil sorption[J]. Polymer, 2021, 212(6):1-12.
[21] SAMATYA YILMAZ S, AYTAC A. Poly(lactic acid)/polyurethane blend electrospun fibers:structural,thermal,mechanical and surface properties[J]. Iranian Polymer Journal, 2021, 30(9):873-883.
doi: 10.1007/s13726-021-00944-7
[22] CHEN J, CHENG Z, YUAN Y, et al. Shape-controllable nanofibrous membranes with well-aligned fibers and robust mechanical properties for PM2.5 capture[J]. RSC Advances, 2019, 9(30):17473-17478.
doi: 10.1039/C9RA02341K
[23] PEER P, STENICKA M, PAVLINEK V, et al. An electrorheological investigation of PVB solutions in connection with their electrospinning qualities[J]. Polymer Testing, 2014, 39:115-121.
doi: 10.1016/j.polymertesting.2014.07.016
[24] YANILMAZ M, KALAOGLU F, KARAKAS H, et al. Preparation and characterization of electrospun polyurethane-polypyrrole nanofibers and films[J]. Journal of Applied Polymer Science, 2012, 125(5):4100-4108.
doi: 10.1002/app.v125.5
[25] WANG N, ZHU Z, SHENG J, et al. Superamphiphobic nanofibrous membranes for effective filtration of fine particles[J]. Journal of Colloid and Interface Science, 2014, 428:41-48.
doi: 10.1016/j.jcis.2014.04.026 pmid: 24910033
[26] JU Y, HAN T, YIN J, et al. Bumpy structured nanofibrous membrane as a highly efficient air filter with antibacterial and antiviral property[J]. Sci Total Environ, 2021, 777:1-10.
[1] 杨奇, 刘高慧, 黄琪帏, 胡睿, 丁彬, 俞建勇, 王先锋. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(01): 12-22.
[2] 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29.
[3] 谷金峻, 魏春艳, 郭紫阳, 吕丽华, 白晋, 赵航慧妍. 棉秆皮微晶纤维素/改性氧化石墨烯阻燃纤维的制备及其性能[J]. 纺织学报, 2024, 45(01): 39-47.
[4] 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55.
[5] 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64.
[6] 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16.
[7] 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25.
[8] 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34.
[9] 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26.
[10] 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224.
[11] 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35.
[12] 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73.
[13] 陈美玉, 李立凤, 董侠. 长碳链聚酰胺1012纤维在不同温度下的力学性能[J]. 纺织学报, 2023, 44(11): 9-18.
[14] 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23.
[15] 付征, 穆齐锋, 张青松, 张宇晨, 李玉莹, 蔡仲雨. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!