纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 26-33.doi: 10.13475/j.fzxb.20220302001
SHI Jingya1, WANG Huijia1, YI Yuqing1, LI Ni1,2,3()
摘要:
为减少人类生产活动排放的PM0.3悬浮颗粒对生态环境和公众健康产生的危害,以聚氨酯/聚乙烯醇缩丁醛(PU/PVB)为原料,采用静电纺丝方法制备了一种新型复合纳米纤维膜。通过改变PVB在复合纳米纤维膜中的质量占比来调控复合纳米纤维膜的形貌结构、化学结构、力学性能、热学性能、透气性能和过滤性能。结果表明:PVB的加入有效减小了PU纳米纤维的平均直径;当PU和PVB的质量比为8∶2时,复合纳米纤维膜的平均直径为385 nm,相比于PU纳米纤维膜减少51%;断裂应力达到16 MPa,相比于PU纳米纤维膜增加45%,断裂应变为148%,具有优异力学性能;该复合纳米纤维膜具有良好的热稳定性,起始分解温度为289.37 ℃,其对PM0.3的过滤效率为98.851%,过滤压降为181.7 Pa,品质因子为0.024 6 Pa-1,是一种理想的PM0.3悬浮颗粒过滤介质。
中图分类号:
[1] | ZHANG R, WANG H, ZHU Z, et al. Fabrication of nanofiber filters for electret air conditioning filter via a multi-needle electrospinning[J]. AIP Advances, 2020, 10(10):1-11. |
[2] | 刘朝军, 刘俊杰, 丁伊可, 等. 静电纺丝法制备高效空气过滤材料的研究进展[J]. 纺织学报, 2019, 40(6):134-142. |
LIU Chaojun, LIU Junjie, DING Yike, et al. Research progress in preparation of high-efficiency air filter materials by electrospinning[J]. Journal of Textile Research, 2019, 40(6): 134-142. | |
[3] | 彭孟娜, 马建伟. 静电纺纳米纤维材料的发展现状与应用[J]. 产业用纺织品, 2018, 36(1):1-5. |
PENG Mengna, MA Jianwei. Development status and application of electrospun nanofiber materials[J]. Technical Textiles, 2018, 36(1):1-5. | |
[4] | ZUO F, ZHANG S, LIU H, et al. Free-standing polyurethane nanofiber/nets air filters for effective PM capture[J]. Small, 2017, 13(46):1-11. |
[5] | 洪贤良, 陈小晖, 张建青, 等. 静电纺多级结构空气过滤材料的研究进展[J]. 纺织学报, 2020, 41(6):174-182. |
HONG Xianliang, CHEN Xiaohui, ZHANG Jianqing, et al. Research progress in preparation of hierarchically structured air filter materials by electrospinning[J]. Journal of Textile Research, 2020, 41(6):174-182.
doi: 10.1177/004051757104100215 |
|
[6] |
LU T, CUI J, QU Q, et al. Multistructured electrospun nanofibers for air filtration:a review[J]. ACS Appl Mater Interfaces, 2021, 13(20):23293-23313.
doi: 10.1021/acsami.1c06520 |
[7] | ZHU M, HAN J, WANG F, et al. Electrospun nanofibers membranes for effective air filtration[J]. Macromolecular Materials and Engineering, 2017, 302(1):1-27. |
[8] | YANG X, PU Y, ZHANG Y, et al. Multifunctional composite membrane based on BaTiO3@PU/PSA nanofibers for high-efficiency PM2.5 removal[J]. J Hazard Mater, 2020, 391(5):1-11. |
[9] |
CUI Y, JIANG Z, XU C, et al. Preparation filtration and photocatalytic properties of PAN@g-C3N4 fibrous membranes by electrospinning[J]. RSC Advances, 2021, 11(32):19579-19586.
doi: 10.1039/D1RA03234H |
[10] |
LIU Y, JIA C, ZHANG H, et al. Free-standing ultrafine nanofiber papers with high PM0.3 mechanical filtration efficiency by scalable blow and electro-blow spin-ning[J]. ACS Appl Mater Interfaces, 2021, 13(29):34773-34781.
doi: 10.1021/acsami.1c04253 |
[11] |
OPALKOVA Siskova A, MOSNACKOVA K, HRUZA J, et al. Electrospun poly(ethylene terephthalate)/silk fibroin composite for filtration application[J]. Polymers (Basel), 2021, 13(15):1-23.
doi: 10.3390/polym13010001 |
[12] |
NA W, RAZA A, YANG S, et al. Tortuously structured polyvinyl chloride/polyurethane fibrous membranes for high-efficiency fine particulate filtration[J]. J Colloid Interface, 2013, 398(15):240-246.
doi: 10.1016/j.jcis.2013.02.019 |
[13] |
LIU F, LI M, SHAO W, et al. Preparation of a polyurethane electret nanofiber membrane and its air-filtration performance[J]. Journal of Colloid and Interface Science, 2019, 557(1):318-327.
doi: 10.1016/j.jcis.2019.08.099 |
[14] | 蒋攀. 高湿/油性环境中驻极性能稳定的纳米纤维膜的制备及其PM2.5过滤性能研究[D]. 上海: 东华大学, 2018:1-56. |
JIANG Pan. Moisture and oily molecules stable nanofibrous electret membranes for effectively capturing PM2.5[D]. Shanghai: Donghua University, 2018:1-56. | |
[15] |
ZAKARIA M, SHIBAHARA K, NAKANE K. Melt-electrospun polyethylene nanofiber obtained from polyethylene/polyvinyl butyral blend film[J]. Polymers, 2020, 12(2):1-12.
doi: 10.3390/polym12010001 |
[16] | 李玉瑶. 高孔隙率非织造纤维材料的制备及空气过滤应用研究[D]. 上海: 东华大学, 2020:1-120. |
LI Yuyao. Preparation of fibrous nonwovens with high porosity and their application in air filtration[D]. Shanghai: Donghua University, 2020:1-120. | |
[17] | 顾海宏. PU纳米纤维多孔膜的超疏水改性和热湿传递CFD模拟的研究[D]. 杭州: 浙江理工大学, 2021:1-107. |
GU Haihong. Investigation on superhydrophobic modification and CFD simulation for heat and water vapor transfer of PU nanofiber porous membrane[D]. Hangzhou: Zhejiang Sci-Tech University, 2021:1-107. | |
[18] |
WANG L, GAO Y, XIONG J, et al. Biodegradable and high-performance multiscale structured nanofiber membrane as mask filter media via poly(lactic acid) electrospinning[J]. J Colloid Interface Sci, 2022, 606(2):961-970.
doi: 10.1016/j.jcis.2021.08.079 |
[19] |
KIM M H, LEE W J, LEE D H, et al. Development of nanofiber reinforced double layered cabin air filter using novel upward mass production electrospinning set up[J]. J Nanosci Nanotechnol, 2018, 18(3):2132-2136.
doi: 10.1166/jnn.2018.14970 pmid: 29448729 |
[20] | AKANBI M J, JAYASINGHE S N, WOJCIK A. Characterisation of electrospun PS/PU polymer blend fiber mat for oil sorption[J]. Polymer, 2021, 212(6):1-12. |
[21] |
SAMATYA YILMAZ S, AYTAC A. Poly(lactic acid)/polyurethane blend electrospun fibers:structural,thermal,mechanical and surface properties[J]. Iranian Polymer Journal, 2021, 30(9):873-883.
doi: 10.1007/s13726-021-00944-7 |
[22] |
CHEN J, CHENG Z, YUAN Y, et al. Shape-controllable nanofibrous membranes with well-aligned fibers and robust mechanical properties for PM2.5 capture[J]. RSC Advances, 2019, 9(30):17473-17478.
doi: 10.1039/C9RA02341K |
[23] |
PEER P, STENICKA M, PAVLINEK V, et al. An electrorheological investigation of PVB solutions in connection with their electrospinning qualities[J]. Polymer Testing, 2014, 39:115-121.
doi: 10.1016/j.polymertesting.2014.07.016 |
[24] |
YANILMAZ M, KALAOGLU F, KARAKAS H, et al. Preparation and characterization of electrospun polyurethane-polypyrrole nanofibers and films[J]. Journal of Applied Polymer Science, 2012, 125(5):4100-4108.
doi: 10.1002/app.v125.5 |
[25] |
WANG N, ZHU Z, SHENG J, et al. Superamphiphobic nanofibrous membranes for effective filtration of fine particles[J]. Journal of Colloid and Interface Science, 2014, 428:41-48.
doi: 10.1016/j.jcis.2014.04.026 pmid: 24910033 |
[26] | JU Y, HAN T, YIN J, et al. Bumpy structured nanofibrous membrane as a highly efficient air filter with antibacterial and antiviral property[J]. Sci Total Environ, 2021, 777:1-10. |
[1] | 杨奇, 刘高慧, 黄琪帏, 胡睿, 丁彬, 俞建勇, 王先锋. 熔喷聚乳酸/聚偏氟乙烯电晕驻极空气过滤材料电荷存储与过滤性能相关性研究[J]. 纺织学报, 2024, 45(01): 12-22. |
[2] | 刘金鑫, 周雨萱, 朱柏融, 吴海波, 张克勤. 热黏合聚乙烯/聚丙烯双组分纺黏非织造材料性能及其过滤机制[J]. 纺织学报, 2024, 45(01): 23-29. |
[3] | 谷金峻, 魏春艳, 郭紫阳, 吕丽华, 白晋, 赵航慧妍. 棉秆皮微晶纤维素/改性氧化石墨烯阻燃纤维的制备及其性能[J]. 纺织学报, 2024, 45(01): 39-47. |
[4] | 戎成宝, 孙辉, 于斌. 银-铜双金属纳米粒子/聚乳酸复合纳米纤维膜的制备及其抗菌性能[J]. 纺织学报, 2024, 45(01): 48-55. |
[5] | 陈江萍, 郭朝阳, 张琪骏, 吴仁香, 钟鹭斌, 郑煜铭. 静电纺聚酰胺6/聚苯乙烯复合纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2024, 45(01): 56-64. |
[6] | 王鹏, 申佳锟, 陆银辉, 盛红梅, 王宗乾, 李长龙. 石墨相氮化碳/MXene/磷酸银/聚丙烯腈复合纳米纤维膜的制备及其光催化性能[J]. 纺织学报, 2023, 44(12): 10-16. |
[7] | 王汉琛, 吴嘉茵, 黄彪, 卢麒麟. 生物相容性纳米纤维素自愈合水凝胶的构建及其性能[J]. 纺织学报, 2023, 44(12): 17-25. |
[8] | 孙辉, 崔小港, 彭思伟, 丰江丽, 于斌. 聚乳酸/磁性金属有机框架材料复合熔喷布的制备及其空气过滤性能[J]. 纺织学报, 2023, 44(12): 26-34. |
[9] | 雷彩虹, 俞林双, 金万慧, 朱海霖, 陈建勇. 丝素蛋白/壳聚糖复合纤维膜的制备与应用[J]. 纺织学报, 2023, 44(11): 19-26. |
[10] | 徐志豪, 徐丹瑶, 李彦, 王璐. 基于表面增强拉曼光谱的纳米纤维基生物传感器的研究进展[J]. 纺织学报, 2023, 44(11): 216-224. |
[11] | 王西贤, 郭天光, 王登科, 牛帅, 贾琳. 聚丙烯腈/银复合纳米纤维高效滤膜的制备及其长效性能[J]. 纺织学报, 2023, 44(11): 27-35. |
[12] | 范梦晶, 吴玲娅, 周歆如, 洪剑寒, 韩潇, 王建. 镀银聚酰胺6/聚酰胺6纳米纤维包芯纱电容传感器的构筑[J]. 纺织学报, 2023, 44(11): 67-73. |
[13] | 陈美玉, 李立凤, 董侠. 长碳链聚酰胺1012纤维在不同温度下的力学性能[J]. 纺织学报, 2023, 44(11): 9-18. |
[14] | 张成成, 刘让同, 李淑静, 李亮, 刘淑萍. 聚左旋乳酸非溶剂挥发诱导成孔机制与纳米多孔纤维膜制备[J]. 纺织学报, 2023, 44(10): 16-23. |
[15] | 付征, 穆齐锋, 张青松, 张宇晨, 李玉莹, 蔡仲雨. 胶体静电纺微纳米纤维的研究进展[J]. 纺织学报, 2023, 44(10): 196-204. |
|