纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 212-221.doi: 10.13475/j.fzxb.20220303310
顾佳1, 张振雄2, 韩颖1, 胡建臣1,2, 张克勤1()
GU Jia1, ZHANG Zhenxiong2, HAN Ying1, HU Jianchen1,2, ZHANG Keqin1()
摘要:
为制备色彩饱和度高、不易褪色且制备过程环境友好的多彩纤维,研究人员开发了多种相关的技术,其中光子晶体形成的结构色纤维具有优良的特性。因此对近年来国内外关于光子晶体结构色纤维的研究进行了回顾,综述了组成结构色纤维的多维光子晶体的生色原理,重点总结了光子晶体结构色纤维的主要制备方法,包括传统纤维外部着色法、模板法组装和不同纺丝技术形成结构色纤维。大量的研究表明,光子晶体作为结构生色技术的基础材料,促进了光子晶体结构色纤维研究的蓬勃发展。此外,综述了多功能结构色纤维在穿戴、检测、传感等领域的研究和应用进展,分析了光子晶体纤维设计和应用的瓶颈问题,并对其未来发展趋势进行了展望。光子晶体纤维的机械性能、优异的色彩饱和度等光学性能和尺寸均匀性使其在可穿戴、传感、生物检测、环境响应等领域具有很好的应用前景。
中图分类号:
[1] |
DAQIQEH R S, DONG Z, YOUEN C J, et al. Nanophotonic structural Colors[J]. ACS Photonics, 2020, 8(1): 18-33.
doi: 10.1021/acsphotonics.0c00947 |
[2] |
DE S L, HODGKINSON I, MURRARY P, et al. Natural and nanoengineered chiral reflectors: structural color of manuka beetles and titania coatings[J]. Electromagnetics, 2005, 25(5): 391-408.
doi: 10.1080/02726340590957399 |
[3] |
KINOSHITA S, YOSHIOKA S. Structural colors in nature: the role of regularity and irregularity in the structure[J]. Chemphyschem, 2005, 6(8): 1442-1459.
pmid: 16015669 |
[4] |
MICHIELSEN K, STAVENGA D G. Gyroid cuticular structures in butterfly wing scales: biological photonic crystals[J]. J R Soc Interface, 2008, 5(18): 85-94.
pmid: 17567555 |
[5] |
SILLBERGLIED R T. Ultraviolet differences between the sulphur butterflies,colias eurytheme and c. philodice, and a possible isolating mechanism.[J]. Nature, 1973, 241: 406-408.
doi: 10.1038/241406a0 |
[6] | VUKUSIC P, STAVENGA D G. Physical methods for investigating structural colours in biological systems[J]. J R Soc Interface, 2009, 6 (2): 133-148. |
[7] |
CAI Z, LI Z, RAVAINE S, et al. From colloidal particles to photonic crystals: advances in self-assembly and their emerging applications[J]. Chem Soc Rev, 2021, 50(10): 5898-5951.
doi: 10.1039/d0cs00706d pmid: 34027954 |
[8] |
KIM J H, KIM K H, LEE G H, et al. Microfluidic production of mechanochromic photonic fibers containing nonclose‐packed colloidal arrays[J]. Small Science, 2021, 1(4): 2000058.
doi: 10.1002/smsc.v1.4 |
[9] |
CUI T, ZHU Z, CHENG R, et al. Facile access to wearable device via microfluidic spinning of robust and aligned fluorescent microfibers[J]. ACS Appl Mater Inter, 2018, 10(36): 30785-30793.
doi: 10.1021/acsami.8b11926 |
[10] |
CHEN Z, YU Y, GUO J, et al. Heterogeneous structural color microfibers for cardiomyocytes tug-of-war[J]. Adv Funct Mater, 2020, 31(9): 2007527.
doi: 10.1002/adfm.v31.9 |
[11] |
裴广晨, 王京霞, 江雷. 仿生光子晶体纤维的研究进展[J]. 化学学报, 2021, 79(4): 414-429.
doi: 10.6023/A20120556 |
PEI Guangchen, WANG Jingxia, JIANG Lei. Research progress of bioinspired photonic crystal fibers[J]. Acta Chimica Sinica, 2018, 37(4): 1468-1478. | |
[12] | 王晓辉, 刘国金, 邵建中. 纺织品仿生结构生色[J]. 纺织学报, 2021, 42(12): 1-14. |
WANG Xiaohui, LIU Guojin, SHAO Jianzhong. Biomimetic structural coloration of textiles[J]. Journal of Textile Research, 2021, 42(12): 1-14.
doi: 10.1177/004051757204200101 |
|
[13] | 寇东辉, 马威, 张淑芬, 等. 一维光子晶体结构色材料的应用研究进展[J]. 化工进展, 2018, 37(4): 1468-1478. |
KOU Donghui, MA Wei, ZHANG Shufen, et al. Research progress on applications of one-dimensional photonic crystal materials with structural colors[J]. Chemical Industry and Engineering Progress, 2018, 37(4): 1468-1478. | |
[14] |
MARLOW F, MULDARISNUR, SHARIFI P, et al. Opals: status and prospects[J]. Angew Chem Int Ed Engl, 2009, 48(34): 6212-6233.
doi: 10.1002/anie.200900210 |
[15] | DING H B, LIU C H, YE B F, et al. Free-standing photonic crystal films with gradient structural colors[J]. ACS Applied Materials & Interfaces, 2016, 8(11): 6796-6801. |
[16] |
LIU X, CUI H. Color evaluation of one-dimensional photonic crystal on the fabric[J]. Fiber Polymer, 2014, 15(4): 783-787.
doi: 10.1007/s12221-014-0783-x |
[17] |
WANG H, CHEN Q W, YU Y F, et al. Assembly of superparamagnetic colloidal nanoparticles into field-responsive purple Bragg reflectors[J]. Dalton Trans, 2011, 40(18): 4810-4813.
doi: 10.1039/c1dt10268k pmid: 21465041 |
[18] |
ZHANG Y P, CHODAVARAPU V P, KIRK A G, et al. Structured color humidity indicator from reversible pitch tuning in self-assembled nanocrystalline cellulose films[J]. Sensors and Actuators B: Chemical, 2013, 176: 692-697.
doi: 10.1016/j.snb.2012.09.100 |
[19] |
WANG Z, GUO Z. Biomimetic photonic structures with tunable structural colours: from natural to biomimetic to applications[J]. J Bionic Eng, 2018, 15(1): 1-33.
doi: 10.1007/s42235-017-0001-9 |
[20] |
WELCH V L, VIGNERON J P, PARKER A R. The cause of colouration in the ctenophore beroe cucumis[J]. Curr Biol, 2005, 15(24): R985-986.
doi: 10.1016/j.cub.2005.11.060 |
[21] | 陈辰, 钟金祥, 洪荣墩. 激光干涉光刻法制备二氧化硅光子晶体抗反射膜[J]. 电子技术与软件工程, 2014(9): 121-123. |
CHEN Chen, ZHONG Jinxiang, HONG Rongdun. Antireflection films of silica photonic crystals prepared by laser interference lithography[J]. Electronic Technology & Software Engineering, 2014(9): 121-123. | |
[22] |
CERSONSKY R K, ANTONAGLIA J, DICE B D, et al. The diversity of three-dimensional photonic crystals[J]. Nat Commun, 2021, 12(1): 2543.
doi: 10.1038/s41467-021-22809-6 pmid: 33953178 |
[23] |
TAKEOKA Y. Stimul-responsive opals: colloidal crystals and colloidal amorphous arrays for use in functional structurally colored materials[J]. J Mater Chem C, 2013, 1(38): 6059-6074.
doi: 10.1039/c3tc30885e |
[24] |
SHI L, ZHANG Y, DONG B, et al. Amorphous photonic crystals with only short-range order[J]. Adv Mater, 2013, 25(37): 5314-5320.
doi: 10.1002/adma.201301909 |
[25] |
KOLLE M, LETHBRIDGE A, KREYSING M, et al. Bio-inspired band-gap tunable elastic optical multilayer fibers[J]. Adv Mater, 2013, 25(15): 2239-2245.
doi: 10.1002/adma.201203529 |
[26] |
YUAN W, LI Q, ZHOU N, et al. Structural color fibers directly drawn from colloidal suspensions with controllable optical properties[J]. ACS Appl Mater Inter, 2019, 11(21): 19388-19396.
doi: 10.1021/acsami.8b21070 |
[27] |
WANG Y, NIU W, LO C Y, et al. Interactively full‐color changeable electronic fiber sensor with high stretchability and rapid response[J]. Adv Funct Mater, 2020. DOI:10.1002/adfm.202000356.
doi: 10.1002/adfm.202000356 |
[28] |
CHEN F, YANG H, LI K, et al. Facile and effective coloration of dye-Inert carbon fiber fabrics with tunable colors and excellent laundering durability[J]. ACS Nano, 2017, 11(10): 10330-10336.
doi: 10.1021/acsnano.7b05139 pmid: 28933813 |
[29] |
NIU W, ZHANG L, WANG Y, et al. Multicolored photonic crystal carbon fiber yarns and fabrics with mechanical robustness for thermal management[J]. ACS Appl Mater Inter, 2019, 11(35): 32261-32268.
doi: 10.1021/acsami.9b09459 |
[30] |
NIU W, LI X, KARUTURI S K, et al. Applications of atomic layer deposition in solar cells[J]. Nanotechnology, 2015, 26(6): 064001.
doi: 10.1088/0957-4484/26/6/064001 |
[31] |
LIU Z, ZHANG Q, WANG H, et al. Structurally colored carbon fibers with controlled optical properties prepared by a fast and continuous electrophoretic deposition method[J]. Nanoscale, 2013, 5(15): 6917-6922.
doi: 10.1039/c3nr01766d pmid: 23783532 |
[32] |
SUN X, ZHANG J, LU X, et al. Mechanochromic photonic-crystal fibers based on continuous sheets of aligned carbon nanotubes[J]. Angew Chem Int Ed Engl, 2015, 54(12): 3630-3634.
doi: 10.1002/anie.201412475 |
[33] | LAI C H, HUANG Y J, WU P W, et al. Rapid fabrication of cylindrical colloidal crystals and their inverse opals[J]. J Electrochem Soc, 2010, 157(3): 23-27. |
[34] |
SHANG S, ZHANG Q, WANG H, et al. Facile fabrication of magnetically responsive PDMS fiber for camouflage[J]. J Colloid Interface Sci, 2016, 483: 11-16.
doi: 10.1016/j.jcis.2016.08.005 |
[35] |
ZHAO K, CHENG J, SUN N, et al. Photonic janus carbon fibers with structural color gradient for multicolored, wirelessly wearable thermal management devices[J]. Adv Mater Technol, 2021. DOI: 10.1002/admt.2101057.
doi: 10.1002/admt.2101057 |
[36] |
SHANG S, ZHU P, WANG H, et al. Thermally responsive photonic fibers consisting of chained nanoparticles[J]. ACS Appl Mater Inter, 2020, 12(45): 50844-50851.
doi: 10.1021/acsami.0c14749 |
[37] |
DOMèNECH B, TAN A T L, JELITTO H, et al. Strong macroscale supercrystalline structures by 3D printing combined with self‐assembly of ceramic functionalized nanoparticles[J]. Adv Eng Mater, 2020. DOI:10.1002/adem.20200352.
doi: 10.1002/adem.20200352 |
[38] |
ZHAO Z, WANG H, SHANG L, et al. Bioinspired heterogeneous structural color stripes from capill-aries[J]. Adv Mater, 2017. DOI: 10.1002/adma.1704569.
doi: 10.1002/adma.1704569 |
[39] |
GAO B, TANG L, ZHANG D, et al. Transpirati-inspired fabrication of opal capillary with multiple heterostructures for multiplex aptamer-based fluorescent assays[J]. ACS Appl Mater Inter, 2017, 9(38): 32577-32582.
doi: 10.1021/acsami.7b10143 |
[40] |
ISAPOUR G, MILLER B H, KOLLE M. Modular assembly of mechanoresponsive color-changing materials from hydrogel-based photonic crystal microspheres[J]. Advanced Photonics Research, 2021, 3(1): 2100043.
doi: 10.1002/adpr.v3.1 |
[41] |
CHEN J, XU L, YANG M, et al. Highly stretchable photonic crystal hydrogels for a sensitive mechanochromic sensor and direct Ink writing[J]. Chem Mater, 2019, 31(21): 8918-8926.
doi: 10.1021/acs.chemmater.9b02961 |
[42] |
KIM S H, HWANG H, YANG S M. Fabrication of robust optical fibers by controlling film drainage of colloids in capillaries[J]. Angew Chem Int Ed Engl, 2012, 51(15): 3601-3605.
doi: 10.1002/anie.v51.15 |
[43] |
YUAN W, ZHANG K Q. Structural evolution of electrospun composite fibers from the blend of polyvinyl alcohol and polymer nanoparticles[J]. Langmuir, 2012, 28(43): 15418-15424.
doi: 10.1021/la303312q pmid: 23039272 |
[44] |
YUAN W, ZHOU N, SHI L, et al. Structural coloration of colloidal fiber by photonic band gap and resonant mie scattering[J]. ACS Appl Mater Inter, 2015, 7(25): 14064-14071.
doi: 10.1021/acsami.5b03289 |
[45] |
MU Q, ZHANG Q, GAO L, et al. Structural evolution and formation mechanism of the soft colloidal arrays in the core of PAAM nanofibers by electrospun packing[J]. Langmuir, 2017, 33(39): 10291-10301.
doi: 10.1021/acs.langmuir.7b02275 pmid: 28876075 |
[46] |
YUAN S J, MENG W H, DU A H, et al. Direct-writing structure color patterns on the electrospun colloidal fibers toward wearable materials[J]. Chinese J Polym Sci, 2019, 37(8): 729-736.
doi: 10.1007/s10118-019-2286-0 |
[47] |
KOHRI M, YANAGIMOTO K, KAWAMURA A, et al. Polydopamine-based 3D colloidal photonic materials: structural color balls and fibers from melanin-Like particles with polydopamine shell layers[J]. ACS Appl Mater Inter, 2018, 10(9): 7640-7648.
doi: 10.1021/acsami.7b03453 |
[48] |
LI G X, SHEN H X, LI Q, et al. Fabrication of colorful colloidal photonic crystal fibers via a microfluidic spinning technique[J]. Mater Lett, 2019, 242: 179-182.
doi: 10.1016/j.matlet.2019.01.093 |
[49] |
ZHU Z, LIU J D, LIU C, et al. Microfluidics-assisted assembly of injectable photonic hydrogels toward reflective cooling[J]. Small, 2020. DOI:10.1002/smll.201903939.
doi: 10.1002/smll.201903939 |
[50] |
ZHANG J, HE S, LIU L, et al. The continuous fabrication of mechanochromic fibers[J]. J Mater Chem C, 2016, 4(11): 2127-2133.
doi: 10.1039/C5TC04073F |
[51] |
LI S, XIA L, CHEN Z, et al. Colloidal crystal cladding fiber based on side-polished fiber and its temperature sensing[J]. Opt Quant Electron, 2017, 49(2): 66.
doi: 10.1007/s11082-017-0905-y |
[52] |
DI PALMA P, SANSONE L, TADDEI C, et al. Fiber optic probe based on self-assembled photonic crystal for relative humidity sensing[J]. J Lightwave Technol, 2019, 37(18): 4610-4618.
doi: 10.1109/JLT.50 |
[53] | PALMA P D, TADDEI C, BORRIELLO A, et al. Self-assembled colloidal photonic crystal on the fiber optic tip as a sensing probe[J]. IEEE Photonics J, 2017, 9(2): 1-11. |
[54] |
SANSONE L, CAMPOPIANO S, PANNICO M, et al. Photonic bandgap influence on the sers effect in metal-dielectric colloidal crystals optical fiber probe[J]. Sensor Actuat B: Chem, 2021. DOI:10.1016/j.snb2021.130149.
doi: 10.1016/j.snb2021.130149 |
[55] |
HAIBIN N, MING W, LONG L, et al. Photonic-crystal-based optical fiber bundles and their applications[J]. IEEE Photonics J, 2013.DOI:10.1109/JPH07.2013.
doi: 10.1109/JPH07.2013 |
[1] | 柳浩, 马万彬, 栾一鸣, 周岚, 邵建中, 刘国金. 光子晶体结构生色碳纤维/涤纶混纺纱线的制备及其性能[J]. 纺织学报, 2023, 44(02): 159-167. |
[2] | 李月佳, 高伟洪, 杨树, 林田田, 朱婕, 赵小燕, 张之悦. 全光谱SiO2结构色薄膜的加色法制备及其光学性能[J]. 纺织学报, 2023, 44(02): 168-175. |
[3] | 高益平, 李义臣, 王晓辉, 刘国金, 周岚, 邵敏, 邵建中. 基于液态光子晶体固定化的柔性结构生色膜制备及其性能[J]. 纺织学报, 2022, 43(12): 1-7. |
[4] | 张星月, 韩朋帅, 王一萌, 张耘箫, 周岚, 刘国金. 非对称润湿特性纺织基材上高稳固光子晶体的构筑[J]. 纺织学报, 2022, 43(08): 88-94. |
[5] | 林田田, 杨丹, 高伟洪, 张之悦, 赵小燕. 具有低角度依赖性的全可见光谱结构色薄膜的制备[J]. 纺织学报, 2022, 43(02): 149-155. |
[6] | 朱小威, 韦天琛, 邢铁玲, 陈国强. 非晶光子晶体结构色织物的制备及其数值模拟[J]. 纺织学报, 2021, 42(09): 90-96. |
[7] | 王晓辉, 李义臣, 刘国金, 唐族平, 周岚, 邵建中. 柔性光子晶体结构生色膜的制备及其光学性质[J]. 纺织学报, 2021, 42(02): 12-20. |
[8] | 陈佳颖, 田旭, 彭晶晶, 方彤, 高伟洪. 针织物表面结构色的构建[J]. 纺织学报, 2020, 41(07): 117-121. |
[9] | 刘国金, 韩朋帅, 柴丽琴, 吴钰, 李慧, 高雅芳, 周岚. 涤纶织物上自交联型P(St-NMA)光子晶体的构筑及其结构稳固性[J]. 纺织学报, 2020, 41(05): 99-104. |
[10] | 陈佳颖, 辛斌杰, 辛三法, 杜卫平, 许颖琦, 高伟洪. 基于光子晶体的结构色织物研究进展[J]. 纺织学报, 2020, 41(04): 181-187. |
[11] | 张慧 刘晓艳. 光子晶体在织物表面的色泽呈现[J]. 纺织学报, 2017, 38(08): 91-95. |
[12] | 李义臣 刘国金 邵建中 周岚. 二氧化硅/聚甲基丙烯酸甲酯光子晶体在涤纶织物上的结构生色[J]. 纺织学报, 2016, 37(10): 62-67. |
|