纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 99-107.doi: 10.13475/j.fzxb.20220305501

• 纺织工程 • 上一篇    下一篇

不同循环加载路径下黄麻织物/聚乙烯复合材料的变形特性

汪泽幸(), 周衡书, 杨敏, 谭冬宜   

  1. 湖南工程学院 纺织服装学院, 湖南 湘潭 411104
  • 收稿日期:2022-03-16 修回日期:2023-06-18 出版日期:2023-09-15 发布日期:2023-10-30
  • 作者简介:汪泽幸(1982—),男,教授,博士。主要研究方向为产业用纺织品。E-mail:zexing.wang@hnie.edu.cn
  • 基金资助:
    湖南省教育厅科学研究项目(20A111);湖南省教育厅科学研究项目(20B135);湖南省重点研究计划项目(2020NK2028)

Deformation characteristics of jute fabric/polyethylene composite under different cyclic loading paths

WANG Zexing(), ZHOU Hengshu, YANG Min, TAN Dongyi   

  1. College of Textile and Fashion, Hunan Institute of Engineering, Xiangtan, Hunan 411104, China
  • Received:2022-03-16 Revised:2023-06-18 Published:2023-09-15 Online:2023-10-30

摘要:

为深入研究复杂受力条件下纤维增强热塑性复合材料的力学行为特性,采用热压法制备黄麻织物/聚乙烯复合材料,分别对其在循环加载、逐级递增循环加载以及逐级递减循环加载路径下的变形特性进行了实验研究,分析了累积应变、各次循环应变以及应变回复系数的变化规律,并探讨了变形机制。结果表明:黄麻织物/聚乙烯复合材料的变形特性不仅受循环峰值应力的影响,同时还与循环加载路径密切相关;在分别循环加载和逐级递增循环加载路径下,该热塑性复合材料在各级加载阶段均表现出循环软化特性;在逐级递减循环加载路径下,复合材料在首级加载阶段亦表现出循环软化特性,但在后续加载阶段均表现出循环硬化特性。

关键词: 黄麻织物, 聚乙烯, 热塑性复合材料, 循环加载, 加载路径, 变形特性

Abstract:

Objective Owning to the advantages in terms of low-density, low-cost, recyclability, and excellent mechanical properties, the natural fiber reinforced thermoplastic composites have broad application prospects in fields such as transportation and construction. However, natural fiber reinforced thermoplastic composites are still limited in engineering design and application, partly due to a lack of in-depth and comprehensive understanding of its mechanical properties and failure mechanisms under complex loading conditions. Therefore, the paper proposed to investigate the influence of cyclic loading paths on the deformation characteristics and mechanism of jute fabric/polyethylene composites.

Method Jute fabric/polyethylene composite prepared by hot press method based on jute woven fabric as reinforcement and polyethylene film as matrix, the mechanical properties of the composite were tested under cyclic loading paths of constant-amplitude cyclic loading, stepwise increasing cyclic loading and decreasing cyclic loading. The accumulated strain, strain of each cycle and strain recovery factor were analyzed, and the deformation mechanism was also discussed.

Results The jute fabric/polyethylene composite exhibited cyclic softening characteristic at all loading stages under constant-amplitude cyclic loading, and stepwise increasing cyclic loading and in first loading stage under stepwise decreasing cyclic loading led to cyclic hardening in the subsequent loading stages under stepwise decreasing cyclic loading (Fig. 3). Under constant-amplitude cyclic loading and stepwise increasing cyclic loading, the jute fabric/polyethylene composite demonstrated similar deformation mechanism; and with the increase of cyclic peak stress and cycle number, the accumulative strain (accumulative maximum and residual strain) of each loading stage was increase (Fig. 5), and the loading strain, elastic strain and residual strain of each loading stage were decrease (Fig. 6). Under stepwise decreasing cyclic loading, the variation of accumulative strain, loading strain, elastic strain and residual strain with cycle number in the first loading stage was similar to that under constant-amplitude cyclic loading and stepwise increasing cyclic loading, and was opposite in the subsequent loading stages (Fig. 5, Fig. 6). Meanwhile, the strain recovery coefficient gradually approached 100% with increase with cycle number under different cyclic loading paths, and the strain recovery coefficient gradually increase close to 100% in all loading stages under constant-amplitude and stepwise increasing cyclic loading and in first loading stage under stepwise decreasing cyclic loading, however, decreased close to 100% in the subsequent loading stages under stepwise decreasing cyclic loading (Fig. 7).

Conclusion The results show that deformation characteristics and mechanism of jute fabric/polyethylene composite are affected by cyclic peak stress, which is also closely related to cyclic loading paths. Hence, the influence of cyclic loading path was investigated on the deformation characteristics of the natural fiber reinforced thermoplastic composites, which better reflect the long-term mechanical performance under actual use conditions, and thus make more practical conclusions. In order to comprehensively study the mechanical behavior of these materials under complex loading histories, in-depth investigation on deformation and energy dissipation under different cyclic loading rates, random cyclic peak stresses was proposed for future research.

Key words: jute fabric, polyethylene, thermoplastic composite, cyclic loading, loading path, deformation characteristic

中图分类号: 

  • TS101.923

图1

不同循环加载路径下应力-应变曲线"

图2

代表性循环阶段的应力-应变曲线(σmax=13.98 N/mm2)"

图3

不同循环加载路径下的应变时间曲线"

图4

累积加载应变与累积残余应变曲线"

图5

不同循环加载路径下各级累积加载应变与累积残余应变曲线"

图6

各级各次循环的加载应变、弹性应变及残余应变曲线"

图7

不同循环加载路径下各级应变回复系数曲线"

[1] ALY N M, SEDDEQ H S, ELNAGAR K, et al. Acoustic and thermal performance of sustainable fiber reinforced thermoplastic composite panels for insulation in buildings[J]. Journal of Building Engineering, 2021, 8(40):1-12.
doi: 10.1016/j.jobe.2016.08.006
[2] 李晓丹, 唐莹, 冯佳成, 等. 天然纤维增强复合材料性能的研究及应用[J]. 化工新型材料, 2021, 49(6):231-235.
LI Xiaodan, TANG Ying, FENG Jiacheng, et al. Research and application of natural fiber reinforced composite[J]. New Chemical Materials, 2021, 49(6):231-235.
[3] 周颖, 罗阳, 郭建兵, 等. 麻纤维增强聚丙烯复合材料研究进展[J]. 工程塑料应用, 2018, 46(7):142-145.
ZHOU Ying, LUO Yang, GUO Jianbing, et al. Research progress of hemp fiber reinforced polypropylene composites[J]. Engineering Plastics Application, 2018, 46 (7):142-145.
[4] 盛旭敏. 麻纤维/异种纤维/聚合物复合材料研究进展[J]. 化工新型材料, 2018, 46(12):238-241.
SHENG Xumin. Research progress of fibrilia and other fiber hybrid polymer composite[J]. New Chemical Materials, 2018, 46(12):238-241.
[5] 赵鑫, 孙占英. 超支化聚合物对聚丙烯/剑麻纤维复合材料性能影响[J]. 工程塑料应用, 2021, 49(1):120-124.
ZHAO Xin, SUN Zhanying. Effect of hyperbranched polymer on properties of polypropylene/sisal fiber composites[J]. Engineering Plastics Application, 2021, 49 (1): 120-124.
[6] SHEN J, LI X, YAN X. Mechanical and acoustic properties of jute fiber-reinforced polypropylene composites[J]. ACS Omega, 2021, 6(46):31154-31160.
doi: 10.1021/acsomega.1c04605 pmid: 34841157
[7] GASSAN J. A study of fibre and interface parameters affecting the fatigue behaviour of natural fibre compo-sites[J]. Composites Part A: Applied Science and Manufacturing, 2002, 33(3):369-374.
doi: 10.1016/S1359-835X(01)00116-6
[8] KATOGI H, SHIMAMURA Y, TOHGO K, et al. Fatigue behavior of unidirectional jute spun yarn reinforced PLA[J]. Advanced Composite Materials, 2012, 21(1):1-10.
doi: 10.1163/156855111X610226
[9] FOTOUH A, WOLODKO J D, LIPSETT M G. Fatigue of natural fiber thermoplastic composites[J]. Composites Part B, 2014, 62:175-182.
doi: 10.1016/j.compositesb.2014.02.023
[10] KANNY K, MOHAN T P. Surface treatment of sisal fiber composites for improved moisture and fatigue properties[J]. Composite Interfaces, 2013, 20(9):783-797.
doi: 10.1080/15685543.2013.819699
[11] SUHAD D S. Effects of jute fibre content on the mechanical and dynamic mechanical properties of the composites in structural applications[J]. Defense Technology, 2020, 16(6):1098-1105.
[12] KOBAYASHI S. Damage behavior of hemp fiber reinforced poly (L-lactic acid) composites under fatigue loading[J]. Journal of Solid Mechanics and Materials Engineering, 2013, 7(2):317-323.
doi: 10.1299/jmmp.7.317
[13] HAGGUI M, MAHI A E, JENDLI Z, et al. Static and fatigue characterization of flax fiber reinforced thermos-plastic composites by acoustic emission[J]. Applied Acoustics, 2019, 147(4):100-110.
doi: 10.1016/j.apacoust.2018.03.011
[14] ANETA L K, PAULINA K, STANISŁAW K. Accelerated fatigue testing of biodegradable composites with flax fibers[J]. Journal of Polymers and the Environment, 2015, 23(3):400-406.
doi: 10.1007/s10924-015-0719-6
[15] CHILALI A, ZOUARI W, ASSARAR M, et al. Effect of water ageing on the load-unload cyclic behaviour of flax fibre-reinforced thermoplastic and thermosetting compo sites[J]. Composite Structures, 2018, 183(1):309-319.
doi: 10.1016/j.compstruct.2017.03.077
[16] GASSAN J, BLEDZKI A K. Possibilities to improve the properties of natural fiber reinforced plastics by fiber modification-jute polypropylene composites[J]. Applied Composite Materials, 2000, 7(5):373-385.
doi: 10.1023/A:1026542208108
[17] 汪泽幸, 吴波, 何斌, 等. 循环荷载下黄麻纤维/聚乙烯复合材料的残余变形演化与能量耗散特性[J]. 产业用纺织品, 2019, 37(10):25-29.
WANG Zexing, WU Bo, HE Bin, et al. Residual deformation evolution and energy dissipation characteristics of jute fiber/polyethylene composites under cyclic loading[J]. Technical Textiles, 2019, 37(10):25-29.
[18] 汪泽幸, 吴波, 李帅, 等. 循环应力松弛下黄麻织物/聚乙烯复合材料能量耗散演化规律[J]. 纺织学报, 2020, 41(10):74-80.
WANG Zexing, WU Bo, LI Shuai, et al. Energy dissipation evolution of jute fabric/polyethylene composite under cyclic stress relaxation[J]. Journal of Textile Research, 2020, 41(10):74-80.
[19] 汪泽幸, 吴波, 李帅, 等. 反复应力松弛下黄麻织物/聚乙烯复合材料的变形特性[J]. 湖南工程学院学报(自然科学版), 2020, 30(3):63-67.
WANG Zexing, WU Bo, LI Shuai, et al. Deformation characteristics of jute fabric/polyethylene composite material under cyclic stress relaxation[J]. Journal of Hunan Institute of Engineering (Natural Science Edition), 2020, 30(3):63-67.
[20] MORTAZAVIAN S, FATEMI A. Fatigue of short fiber thermoplastic composites: a review of recent experimental results and analysis[J]. International Journal of Fatigue, 2017, 102(9): 171-183.
doi: 10.1016/j.ijfatigue.2017.01.037
[1] 姚双双, 付少举, 张佩华, 孙秀丽. 再生丝素蛋白/聚乙烯醇共混取向纳米纤维膜的制备与性能[J]. 纺织学报, 2023, 44(09): 11-19.
[2] 钱耀威, 殷连博, 李家炜, 杨晓明, 李耀邦, 戚栋明. 聚乙烯基膦酸/多乙烯多胺层层自组装阻燃棉织物的制备及其性能[J]. 纺织学报, 2023, 44(09): 144-152.
[3] 张杏, 叶伟, 龙啸云, 曹海建, 孙启龙, 马岩, 王征. 超高分子量聚乙烯纤维织物/热塑性聚氨酯复合材料的界面黏结性能[J]. 纺织学报, 2023, 44(08): 143-150.
[4] 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33.
[5] 安雪, 刘太奇, 李言, 赵小龙. 牢固结合的多层纳米纤维复合材料的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 50-56.
[6] 陈露, 吴孟锦, 贾立霞, 阎若思. 氧等离子体改性超高分子量聚乙烯纤维复合材料层间损伤声发射特征分析[J]. 纺织学报, 2023, 44(07): 116-125.
[7] 范洋瑞, 钱建华, 徐凯杨, 王澳, 陶正龙. 基于氯化聚氯乙烯/聚乙烯醇缩丁醛共混膜的界面聚合改性[J]. 纺织学报, 2023, 44(07): 33-41.
[8] 夏良君, 曹根阳, 刘欣, 徐卫林. 高性能纤维及其制品颜色构建的研究进展[J]. 纺织学报, 2023, 44(06): 1-9.
[9] 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167.
[10] 狄友波, 陈燮阳, 阎智锋, 殷轩, 邱纯利, 马伟良, 张向兵. 壳聚糖-聚乙烯醇协同对籽用大麻浆粕铁离子的脱除[J]. 纺织学报, 2023, 44(06): 175-182.
[11] 史豪秦, 于影, 左雨欣, 刘宜胜, 左春柽. SnO2/聚乙烯吡咯烷酮防腐薄膜的制备及其在柔性铝-空气电池中的应用[J]. 纺织学报, 2023, 44(06): 33-40.
[12] 王双华, 王冬, 付少海, 仲鸿天, 董朋. 海岛纤维用增塑改性聚乙烯醇的制备及其性能[J]. 纺织学报, 2023, 44(04): 8-15.
[13] 李方, 潘航, 章耀鹏, 马慧婕, 沈忱思. 印染废水中聚乙烯醇浆料的高效去除及六价铬的协同还原[J]. 纺织学报, 2023, 44(03): 147-157.
[14] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[15] 刘东炎, 郑成燕, 王晓旭, 钱坤, 张典堂. 超高分子量聚乙烯织物/聚脲柔性复合材料的抗破片侵彻机制[J]. 纺织学报, 2023, 44(03): 79-87.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!