纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 205-216.doi: 10.13475/j.fzxb.20220305802

• 综合述评 • 上一篇    下一篇

纺织工业智能发展现状与展望

郑小虎1,2(), 刘正好3, 陈峰4, 张洁1,2, 汪俊亮1,2   

  1. 1.东华大学 人工智能研究院, 上海 201620
    2.上海工业大数据与智能系统工程技术研究中心, 上海 201620
    3.东华大学 机械工程学院, 上海 201620
    4.经纬纺织机械股份有限公司, 北京 100176
  • 收稿日期:2022-03-17 修回日期:2022-11-01 出版日期:2023-08-15 发布日期:2023-09-21
  • 作者简介:郑小虎(1983—),男,副教授,博士。主要研究方向为机器人制造技术。E-mail:xhzheng@dhu.edu.cn
  • 基金资助:
    上海市晨光计划资助项目(20CG41);中央高校基本科研业务费专项资金资助项目(2232021D-15);上海市科技计划项目(20DZ2251400);国家工信部项目(2021-0173-2-1)

Current status and prospect of intelligent development in textile industry

ZHENG Xiaohu1,2(), LIU Zhenghao3, CHEN Feng4, ZHANG Jie1,2, WANG Junliang1,2   

  1. 1. Institute of Artificial Intelligence,Donghua University, Shanghai 201620, China
    2. Shanghai Industrial Big Data and Intelligent Systems Engineering Technology Center, Shanghai 201620, China
    3. College of Mechanical Engineering,Donghua University, Shanghai 201620, China
    4. Jingwei Textile Machinery Co., Ltd., Beijing 100176, China
  • Received:2022-03-17 Revised:2022-11-01 Published:2023-08-15 Online:2023-09-21

摘要:

为全面了解人工智能技术在纺织工业的发展及应用情况,探究未来智能化发展的任务与目标,基于国内外纺织工业在数字化、网络化、智能化领域的最新发展现状,结合纺织行业的相关需求,分析了当前面临的技术挑战,总结了工业大数据、数字孪生、工业机器人、机器视觉和智能排产调度等当前纺织行业亟需的关键技术;介绍了全流程智能纺织生产线、纺织装备智能运维、纺织品智能检测等典型应用案例和生产模式。最后,总结了我国纺织工业智能化发展进程中仍待突破的核心技术及产业生态的发展方向,提出了发展新一代纺织智能制造系统,打造全产业链协同的纺织智能生态的两点思考与展望,为我国纺织工业智能化发展提供案例参考与技术指引。

关键词: 纺织工业, 纺织智能化, 纺织智能工厂, 智能制造, 工业互联网

Abstract:

Significance With the start of a new round of technological revolution and industrial advancement, China's textile industry has stepped into a new stage of high-quality development. This paper provides a comprehensive overview of the development and application of artificial intelligence technology in the textile industry and explores the tasks and goals of future intelligent development. Based on the latest global developments in digitalization, networking, and intelligence in the textile industry, it analysed the current technical challenges and summarised the key technologies urgently needed in the textile industry. Typical application cases and production models were introduced such as whole-process intelligent textile production lines, intelligent operation and maintenance of textile equipment, and intelligent textile testing. The core technological challenges facing the Chinese textile industry and the development directions of the industrial ecology were to be reviewed. Ideas on developing a new generation of textile-intelligent manufacturing systems and creating an intelligent textile ecology with the collaboration of the whole industrial chain were presented.

Progress At this stage, the Chinese textile industry intelligent manufacturing is in a critical period of digital, networked, and intelligent development (Fig. 1). The critical technologies related to the intelligence of the textile industry are developing rapidly, and big-data technology for the whole textile production process is being applied rapidly (Fig. 2). Digital-twin technology in the textile industry is applied to intelligent garment design and intelligent textile factories (Fig. 3 and Fig. 4). As automated equipment replaces manual labor in typical textile processes, robots in the textile industry have become an essential part of intelligent production. Machine vision technology based on deep learning plays a role in the intelligent control of textile equipment and intelligent inspection of textile quality scenarios (Fig. 5). Intelligent scheduling technology based on machine learning effectively improves the production efficiency of textile enterprises. Based on these technologies, typical examples of intelligent applications in the textile industry have emerged. A data-driven intelligent operation and maintenance system for high-speed winders (Fig. 6), enables data-based intelligent fault diagnosis and remaining life prediction of equipment. The "edge-cloud" collaborative fabric defect detection system enables the detection and identification of a wide range of fabric defects. Xinfengming Group realizes the intelligence of the whole production chain based on 5G and product identification resolution technology (Fig. 7). Wuhan Yudahua's 100000-spindle full-process intelligent spinning line solves the discontinuity problem between some of the ring spinning processes, with an automation rate of over 95% (Fig. 8).

Conclusion and Prospect China's textile industry has made a breakthrough in digitalizing equipment, networking, and workshop intelligence. Significant progress has been made in improving quality and efficiency and optimizing the industrial structure. However, a series of standards system for intelligent manufacturing in the textile industry has yet to be established. In the field of cotton spinning, for example, there are still breakpoints in the automated production of the whole process. The quality traceability of the whole process of product production needs to be strengthened. Data processing and other software are primarily selected from general software developed by information technology developers, which is challenging to meet the precise professional needs of spinning enterprises. The core equipment and industrial software in the field of textiles have not yet formed the technical support capacity, from the true meaning of "intelligent" still has a large gap. The intelligent textile ecology of the whole industrial chain needs to be established. Developing a new generation of intelligent textile manufacturing systems should be based on the study of intelligent textile process, intelligent textile equipment as the focus of development, and intelligent equipment collaboration as the core. At the same time, through the construction of a textile innovative factory demonstration production model, the development of critical technologies of the textile industry Internet, the construction of a blockchain-based networked collaborative rapid response service system, the creation of the whole industry chain collaborative textile intelligent ecology, improve the rapid response service capacity, to achieve the development of the textile industry multi-cluster synergy.

Key words: textile industry, textile intelligence, textile intelligent factory, smart manufacturing, industrial intern

中图分类号: 

  • TP18

图1

纺织工业智能化发展现状"

图2

纺织大数据应用模式"

图3

基于数字孪生的服装设计技术"

图4

基于数字孪生技术的纺纱智能工厂参考模型"

图5

机器视觉技术在纺织领域的应用"

图6

基于机器视觉的面料疵点检测系统"

图7

新凤鸣集团5G智能化生产方案"

图8

裕大华集团智能纺纱管理系统"

图9

纺织工业智能化发展展望"

[1] 中国纺织工业联合会. 纺织行业“十四五”发展纲要[J]. 纺织科学研究, 2021 (7): 40-49.
China National Textile and Apparel Council. Development outline of textile industry in the 14th five year plan[J]. Textile Science Research, 2021 (7): 40-49.
[2] 程醉. 后疫情时代, 我国纺织服装行业如何转型升级?[J]. 中国纤检, 2021 (7): 110-113.
CHENG Zui. How to transform and upgrade China's textile and garment industry in the post-epidemic era?[J]. China Fiber Inspection, 2021 (7): 110-113.
[3] 黄倩倩, 张建纲, 高东辉, 等. 智能纺机专利布局的大国策略[J]. 纺织科学研究, 2021 (7): 50-53.
HUANG Qianqian, ZHANG Jiangang, GAO Donghui, et al. Great power strategy for patent layout of intelligent textile machinery[J]. Textile Science Research, 2021(7): 50-53.
[4] 张贵东. 纺织业“两化融合”水平跃升[N]. 中国纺织报,2023-03-22(1).
ZHANG Guidong. The level of "integration of industrialization and industrialization" in the textile industry has jumped[N]. CHINA TEXTILE NEWS,2023-03-22(1).
[5] 周亚勤, 汪俊亮, 鲍劲松, 等. 纺织智能制造标准体系架构研究与实现[J]. 纺织学报, 2019, 40 (4): 145-151.
ZHOU Yaqin, WANG Junliang, BAO Jinsong, et al. Research and implementation of standard system architecture of textile intelligent manufacturing[J]. Journal of Textile Research, 2019, 40 (4): 145-151.
[6] 程隆棣, 张洁, 张红霞, 等. 棉纺智能化纺纱关键技术刍议[J]. 纺织导报, 2021 (6): 48,50-53.
CHENG Longdi, ZHANG Jie, ZHANG Hongxia, et al. Discussion on the key technology of intelligent cotton spinning[J]. China Textile Leader, 2021 (6): 48,50-53.
[7] TAO F, QI Q, LIU A, et al. Data-driven smart manufacturing[J]. Journal of Manufacturing Systems, 2018, 48: 157-169.
[8] WAN J, TANG S, LI D, et al. A manufacturing big data solution for active preventive maintenance[J]. IEEE Transactions on Industrial Informatics, 2017, 13(4): 2039-2047.
doi: 10.1109/TII.2017.2670505
[9] 张洁, 吕佑龙, 汪俊亮, 等. 大数据驱动的纺织智能制造平台架构[J]. 纺织学报, 2017, 38 (10): 159-165.
ZHANG Jie, LÜ Youlong, WANG Junliang, et al. Big-data-driven framework for intelligent textile manufacturing[J]. Journal of Textile Research, 2017, 38 (10): 159-165.
[10] 万雷. 我国化纤行业智能制造发展现状及展望[J]. 合成纤维工业, 2018, 41 (6): 36-41.
WAN Lei. Intelligent manufacturing development status and trend of China chemical fiber industry[J]. China Synthetic Fiber Industry, 2018, 41 (6): 36-41.
[11] 雷鸽, 李小辉. 数字化服装结构设计技术的研究进展[J]. 纺织学报, 2022, 43(4): 203-209.
LEI Ge, LI Xiaohui. Review of digital pattern-making technology in garment production[J]. Journal of Textile Research, 2022, 43(4): 203-209.
[12] 王春茹, 袁月, 曹晓梦, 等. 立领结构参数对服装造型的影响[J]. 纺织学报, 2022, 43(3): 153-159.
WANG Chunru, YUAN Yue, CAO Xiaomeng, et al. Influence of structural parameters of stand collar on clothing styling[J]. Journal of Textile Research, 2022, 43(3): 153-159.
[13] 夏海浜, 黄鸿云, 丁佐华. 基于迁移学习与支持向量机的服装舒适度评估[J]. 纺织学报, 2020, 41(6): 125-131.
XIA Haibang, HUANG Hongyun, DING Zuohua. Clothing comfort evaluation based on transfer learning and support vector machine[J]. Journal of Textile Research, 2020, 41(6): 125-131.
[14] 黎博文, 王萍, 刘玉叶. 基于人体动态特征的三维服装虚拟试穿技术[J]. 纺织学报, 2021, 42(9): 144-149.
LI Bowen, WANG Ping, LIU Yuye. 3-D virtual try-on technique based on dynamic feature of body postures[J]. Journal of Textile Research, 2021, 42(9): 144-149.
[15] 江红霞, 黄智威, 刘基宏. 基于模块化划分的旗袍虚拟展示[J]. 纺织学报, 2021, 42(5): 138-142.
JIANG Hongxia, HUANG Zhiwei, LIU Jihong. Virtual display of cheongsam based on modularization[J]. Journal of Textile Research, 2021, 42(5): 138-142.
[16] 张淑芳, 王沁宇. 基于生成对抗网络的虚拟试穿方法[J]. 天津大学学报 (自然科学与工程技术版), 2021(9): 925-933.
ZHANG Shufang, WANG Qinyu. Generative-adversarial-network-based virtual try-on method[J]. Journal of Tianjin University (Science and Technology), 2021(9): 925-933.
[17] 冀艳波, 王玲丽, 刘凯旋. 基于数字化三维人体模型的旗袍定制设计[J]. 纺织学报, 2021, 42(1): 133-137.
JI Yanbo, WANG Lingli, LIU Kaixuan. Custom design of cheongsam based on digital 3-D human model[J]. Journal of Textile Research, 2021, 42(1): 133-137.
[18] LU Y, LIU C, WANG K I K, et al. Digital twin-driven smart manufacturing: connotation, reference model, applications and research issues[J]. Robotics and Computer-Integrated Manufacturing, 2020, 61(C): 101837-101837.
[19] WANG P, LUO M. A digital twin-based big data virtual and real fusion learning reference framework supported by industrial internet towards smart manufacturing[J]. Journal of Manufacturing Systems, 2021, 58: 16-32.
doi: 10.1016/j.jmsy.2020.11.012
[20] QI Q, TAO F. Digital twin and big data towards smart manufacturing and industry 4.0: 360 degree comparison[J]. IEEE Access, 2018, 6: 3585-3593.
doi: 10.1109/ACCESS.2018.2793265
[21] 武臣, 薛元, 徐志武, 等. 纺纱过程的数字孪生技术及其智能控制模式实践[J]. 毛纺科技, 2021, 49(8): 82-90.
WU Chen, XUE Yuan, XU Zhiwu, et al. Digital twinning technology of spinning process and practice of its intelligent control mode[J]. Wool Textile Journal, 2021, 49 (8): 82-90.
[22] 徐慧, 邹孝付, 王海天, 等. 基于数字孪生的化纤长丝落卷作业优化方法及验证[J/OL]. 计算机集成制造系统, 2022(6):1-16[2022-03-05]. http://kns.cnki.net/kcms/detail/11.5946.TP.20211112.1723.018.html.
XU Hui, ZOU Xiaofu, WANG Haitian, et al. Optimization method and justification of chemical fiber filament doffing operation based on digital twin[J/OL]. Computer Integrated Manufacturing Systems, 2022(6): 1-16[2022-03-05]. http://kns.cnki.net/kcms/detail/11.5946.TP.20211112.1723.018.html.
[23] 郑小虎, 张洁. 数字孪生技术在纺织智能工厂中的应用探索[J]. 纺织导报, 2019 (3): 37-41.
ZHENG Xiaohu, ZHANG Jie. Application of digital twin technology in textile intelligent factory[J]. China Textile Leader, 2019 (3): 37-41.
[24] 郭明瑞, 韩晨晨, 卢雨正, 等. 浅谈纺纱流程智能化发展的现状[J]. 棉纺织技术, 2020, 48 (5): 81-84.
GUO Mingrui, HAN Chenchen, LU Yuzheng, et al. Disscussion of spinning process intelligent development status[J]. Cotton Textile Technology, 2020, 48 (5): 81-84.
[25] 冯英杰, 蒋高明, 彭佳佳. 人工智能引领纺织行业创新发展[J]. 现代纺织技术, 2021, 29 (3): 71-77.
FENG Yingjie, JIANG Gaoming, PENG Jiajia. Innovation and development of textile industry under guidance of artificial intelligence[J]. Advanced Textile Technology, 2021, 29 (3): 71-77.
[26] PYKA W, JEDRZEJOWSKI M, CHUDY M, et al. On the use of textile materials in robotics[J]. Journal of Engineered Fibers and Fabrics, 2020. doi.org/10.1177/1558925020910725.
[27] SANCHEZ V, WALSH C J, WOOD R J. Textile technology for soft robotic and autonomous garments[J]. Advanced Functional Materials, 2020. https://doi.org/10.1002/adfm.202008278.
[28] 熊安迪. SRT软体机器人:给机器人装上灵巧、柔软的“手”[J]. 机器人产业, 2021 (1): 107-112.
XIONG Andi. SRT software robot: equip the robot with dexterous and soft "hands"[J]. Robot Industry, 2021(1): 107-112.
[29] 李为华, 裴翔, 方政, 等. 印花机自动取放料系统: 207046527U[P].2018-02-27.
LI Weihua, PEI Xiang, FANG Zheng, et al. Automatic material taking and discharging system of printing machine: 207046527U[P]. 2018-02-27.
[30] 吉学齐. 浅议智慧型织造工厂生产模式[J]. 棉纺织技术, 2020, 48 (6): 75-78.
JI Xueqi. Discussion on production mode of intelligent weaving factory[J]. Cotton Textile Technology, 2020, 48 (6): 75-78.
[31] 杨华明, 齐泽京, 梅顺齐. 全流程数字化智能化纺纱装备的开发与实践[J]. 纺织科学研究, 2021 (6): 38-40.
YANG Huaming, QI Zejing, MEI Shunqi, et al. Development and practice of whole process digital and intelligent spinning equipment[J]. Textile Science Research, 2021 (6): 38-40.
[32] 管锦文, 徐旻. 棉纺数字化车间及其智能化特点[J]. 棉纺织技术, 2016, 44 (10): 80-84.
GUAN Jinwen, XU Min. Cotton spinning digital workshop and its intelligentization characteristics[J]. Cotton Textile Technology, 2016, 44 (10): 80-84.
[33] 宋富佳. 康平纳开启筒子纱数字化自动染色新时代[J]. 纺织导报, 2012 (12): 95.
SONG Fujia. Kangpina opens a new era of digital automatic dyeing of bobbin yarn[J]. China Textile Leader, 2012 (12): 95.
[34] 万由顺, 卫江, 桂长明, 等. 全流程智能化纺纱技术创新点及应用效果[J]. 棉纺织技术, 2020, 48 (1): 28-33.
WAN Youshun, WEI Jiang, GUI Changming, et al. Innovation point and application effect of whole process intelligent spinning technology[J]. Cotton Textile Technology, 2020, 48 (1): 28-33.
[35] 王士合. 传统纺纱设备智能化升级改造思路探讨[J]. 棉纺织技术, 2020, 48 (7): 52-55.
WANG Shihe. Discussion on intelligent upgrade and transformation idea of traditional spinning equip-ment[J]. Cotton Textile Technology, 2020, 48(7): 52-55.
[36] 王蕾, 潘如如, 周建, 等. 机器视觉在纺织智能化中的应用进展[J]. 棉纺织技术, 2021, 49(11):9-11.
WANG Lei, PAN Ruru, ZHOU Jian, et al. Application progress of machine vision in textile intellectua-lization[J]. Cotton Textile Technology, 2021, 49(11):9-11.
[37] 肖琦. 纺织品的人工智能检测技术分析[J]. 化纤与纺织技术, 2021, 50 (3): 83-85.
XIAO Qi. Analysis of artificial intelligence detection technology of textiles[J]. Chemical Fiber & Textile Technology, 2021, 50 (3): 83-85.
[38] 吴霭弟, 何伟坚. 纺织品的人工智能检测技术[J]. 化纤与纺织技术, 2020, 49 (1): 38-42.
WU Aidi, HE Weijian. Textile detection based on artificial intelligence[J]. Chemical Fiber & Textile Technology, 2020, 49 (1): 38-42.
[39] ZHAO S, YIN L, ZHANG J, et al. Real-time fabric defect detection based on multi-scale convolutional neural network[J]. IET Collaborative Intelligent Manufacturing, 2020, 2 (4): 189-196.
doi: 10.1049/cim2.v2.4
[40] JING J, HUANG M, LI P, et al. Automatic measurement of yarn hairiness based on the improved MRMRF segmentation algorithm[J]. Journal of The Textile Institute, 2018, 109 (6): 740-749.
doi: 10.1080/00405000.2017.1368106
[41] 晏琳, 景军锋, 李鹏飞. Faster RCNN模型在坯布疵点检测中的应用[J]. 棉纺织技术, 2019, 47(2): 24-27.
YAN Lin, JING Junfeng, LI Pengfei. Application of Faster RCNN mold used in gray fabric defect detection[J]. Cotton Textile Technology, 2019, 47(2): 24-27.
[42] 张缓缓, 马金秀, 景军锋, 等. 基于改进的加权中值滤波与K-means聚类的织物缺陷检测[J]. 纺织学报, 2019, 40 (12): 50-56.
ZHANG Huanhuan, MA Jinxiu, JING Junfeng, et al. Fabric defect detection method based on improved fast weighted median filtering and K-means[J]. Journal of Textile Research, 2019, 40 (12): 50-56.
[43] 宇宏达, 吴丽莉, 陈廷. 群体智能算法在纺织领域的应用[J]. 纺织导报, 2021 (1): 93-96.
YU Hongda, WU Lili, CHEN Tin. Applications of swarm intelligence algorithm in textiles[J]. China Textile Leader, 2021 (1): 93-96.
[44] 周亚勤, 汪俊亮, 鲍劲松, 等. 针织生产智能管控的通用数据模型研究[J]. 中国机械工程, 2019, 30(2): 143-148, 219.
ZHOU Yaqin, WANG Junliang, BAO Jinsong, et al. Study on general data models for intelligent control of knitting production[J]. China Mechanical Engineering, 2019, 30 (2): 143-148,219.
[45] 郑小虎, 鲍劲松, 马清文, 等. 基于模拟退火遗传算法的纺纱车间调度系统[J]. 纺织学报, 2020, 41(6): 36-41.
ZHENG Xiaohu, BAO Jinsong, MA Qingwen, et al. Spinning workshop collaborative scheduling method based on simulated annealing genetic algorithm[J]. Journal of Textile Research, 2020, 41(6): 36-41.
[46] 蔡飞飞, 郗欣甫, 沈瑞超, 等. 经编车间过程监控与生产调度[J]. 东华大学学报(自然科学版), 2020, 46(6): 952-958.
CAI Feifei, XI Xinfu, SHEN Ruichao, et al. Process monitoring and production scheduling for warp knitting workshop[J]. Journal of Donghua University(Natural Science), 2020, 46 (6): 952-958.
[47] 沈春娅, 雷钧杰, 汝欣, 等. 基于改进型NSGAII的织造车间多目标大规模动态调度[J]. 纺织学报, 2022, 43(4): 74-83.
SHEN Chunya, LEI Junjie, RU Xin, et al. Multi-objective large-scale dynamic scheduling for weaving workshops based on improved NSGAII[J]. Journal of Textile Research, 2022, 43(4): 74-83.
doi: 10.1177/004051757304300203
[48] 杜利珍, 王宇豪, 宣自风, 等. 基于改进模拟退火算法的针织生产线调度研究[J/OL]. 计算机工程与应用, 2022.[2022-06-08]. http://kns.cnki.net/kcms/detail/11.21 27.TP.20220530.1813.008.html.
DU Lizhen, WANG Yuhao, YI Zifeng, et al. Research on knitted production line scheduling based on improved simulated annealing algorithm[J/OL]. Computer Engineering and Applications, 2022. [2022-06-08]. http://kns.cnki.net/kcms/detail/11.2127.TP.20220530.1813.008.html.
[49] 胡小荣, 邹鲲. 全自动筒子纱印染线天轨机器人调度策略研究[J]. 制造业自动化, 2020, 42 (11): 1-5, 10.
HU Xiaorong, ZOU Kun. Research on scheduling strategy of automatic creel robot for bobbin yarn printing and dyeing line[J]. Manufacturing Automation, 2020, 42 (11): 1-5, 10.
[50] 贺俊杰, 张洁, 张朋, 等. 基于多智能体强化学习的纺织面料染色车间动态调度方法[J]. 计算机集成制造系统, 2023, 29(1):61-74.
HE Junjie, ZHANG Jie, ZHANG Peng, et al. Multi-agent reinforcement learning based textile dyeing workshop dynamic scheduling method[J/OL]. Computer Integrated Manufacturing Systems, 2023, 29(1):61-74.
[51] 石梓琪. 数据驱动的卷绕机卡头健康状态趋势预测方法[D]. 上海: 东华大学, 2022:3-46.
SHI Ziqi. Data-Driven method for predicting the health state and trend of winder chucks[D]. Shanghai: Donghua University, 2022:3-46.
[52] 朱闯闯. 基于深度学习的化纤卷绕机卡头故障诊断方法[D]. 上海: 东华大学, 2022:1-55.
ZHU Chuangchuang. Fault diagnosis method of chuck head of chemical fiber winder based on deep learning[D]. Shanghai: Donghua University, 2022:1-55.
[53] 张洁, 高鹏捷, 汪俊亮, 等. 一种巡游式机织面料疵点在线检测器: 111650208B[P].2021-08-27.
ZHANG Jie, GAO Pengjie, WANG Junliang, et al. A patrol type online detector for weaving fabric defects:111650208B[P].2021-08-27.
[54] 赵树煊, 张洁, 汪俊亮, 等. 基于两阶段深度迁移学习的面料疵点检测算法[J]. 机械工程学报, 2021, 57(17): 86-97.
doi: 10.3901/JME.2021.17.086
ZHAO Shuxuan, ZHANG Jie, WANG Junliang, et al. Fabric defect detection algorithm based on two-stage deep transfer learning[J]. Journal of Mechanical Engineering, 2021, 57 (17): 86-97.
doi: 10.3901/JME.2021.17.086
[55] 卫江, 田青, 夏治刚, 等. 100%国产化全流程自动化纺纱车间构建与生产实践[J]. 纺织导报, 2021 (6): 54-56, 58.
WEI Jiang, TIAN Qing, XIA Zhigang, et al. Construction and production practice of 100% domestic fullprocess automatic spinning workshop[J]. China Textile Leader, 2021 (6): 54-56, 58.
[56] 编辑部. 新一代人工智能发展规划[J]. 科技导报, 2018, 36 (17): 113.
Editorial Department of Science & Technology Review Development plan of new generation artificial intelligence[J]. Science & Technology Review, 2018, 36 (17): 113.
[1] 许高平, 孙以泽. 移动机械臂牵引卷装纱线的动态建模与控制[J]. 纺织学报, 2024, 45(01): 1-11.
[2] 李新荣, 韩鹏辉, 李瑞芬, 贾坤, 路元江, 康雪峰. 数字孪生在纺纱领域应用的关键技术解析[J]. 纺织学报, 2023, 44(10): 214-222.
[3] 乌婧, 江振林, 吉鹏, 谢锐敏, 陈烨, 陈向玲, 王华平. 纺织品前瞻性制备技术及应用研究现状与发展趋势[J]. 纺织学报, 2023, 44(01): 1-10.
[4] 张洁, 徐楚桥, 汪俊亮, 郑小虎. 数据驱动的机器人化纺织生产智能管控系统研究进展[J]. 纺织学报, 2022, 43(09): 1-10.
[5] 毛慧敏, 孙磊, 屠佳佳, 史伟民. 纱线自动接头机关键技术[J]. 纺织学报, 2022, 43(09): 21-26.
[6] 高晓飞, 齐立哲, 孙云权. 面向柔性面料立体缝纫的随形机械手设计[J]. 纺织学报, 2022, 43(09): 27-33.
[7] 刘锋, 徐杰, 柯文博. 基于深度强化学习的服装缝制过程实时动态调度[J]. 纺织学报, 2022, 43(09): 41-48.
[8] 唐政坤, 刘艳缤, 徐晨烨, 刘艳彪, 沈忱思, 李方, 王华平. 面向减污降碳目标的纺织工业环境治理发展趋势[J]. 纺织学报, 2022, 43(01): 131-140.
[9] 纪柏林, 王碧佳, 毛志平. 纺织染整领域支撑低碳排放的关键技术[J]. 纺织学报, 2022, 43(01): 113-121.
[10] 章耀鹏, 沈忱思, 徐晨烨, 李方. 纺织工业典型污染物治理技术回顾[J]. 纺织学报, 2021, 42(08): 24-33.
[11] 杜劲松, 余雅芸, 赵妮, 谢子昂, 费中华, 潘静姝. 不同类型服装企业智能制造能力成熟度评价模型[J]. 纺织学报, 2021, 42(05): 162-167.
[12] 汪松松, 彭来湖, 戴宁, 沈春娅, 胡旭东. 基于工业互联网的针织机械互联互通结构研究[J]. 纺织学报, 2020, 41(01): 165-173.
[13] 周亚勤, 汪俊亮, 鲍劲松, 张洁. 纺织智能制造标准体系架构研究与实现[J]. 纺织学报, 2019, 40(04): 145-151.
[14] 蒋高明 高哲 高梓越. 针织智能制造研究进展[J]. 纺织学报, 2017, 38(10): 178-183.
[15] 梅顺齐 胡贵攀 王建伟 陈振 徐巧. 纺织智能制造及其装备若干关键技术的探讨[J]. 纺织学报, 2017, 38(10): 166-171.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!