纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 172-178.doi: 10.13475/j.fzxb.20220306807

• 服装工程 • 上一篇    下一篇

智能防寒手套温控系统设计及热舒适性研究

杜吉辉1, 苏云1,2,3(), 刘广菊1, 田苗1,2,3, 李俊1,2,3   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.东华大学 功能防护服装研究中心, 上海 200051
    3.东华大学 现代服装设计与技术教育部重点实验室, 上海 200051
  • 收稿日期:2022-03-21 修回日期:2022-10-28 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 苏云(1990—),男,副教授,博士。主要研究方向为功能防护服及纺织材料热湿传递模型。E-mail:suyun150@dhu.edu.cn
  • 作者简介:杜吉辉(1999—),男,博士生。主要研究方向为服装功能与舒适性。
  • 基金资助:
    国家自然科学基金项目(52004066);上海市教育发展基金会和上海市教育委员会“晨光计划”项目(20CG78);教育部人文社会科学研究青年基金项目(20YJC760087)

Research and design of temperature-control intelligent thermal gloves with wearing comfort

DU Jihui1, SU Yun1,2,3(), LIU Guangju1, TIAN Miao1,2,3, LI Jun1,2,3   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Protective Clothing Research Center, Donghua University, Shanghai 200051, China
    3. Key Laboratory of Clothing Design and Technology, Ministry of Education, Donghua University, Shanghai 200051, China
  • Received:2022-03-21 Revised:2022-10-28 Published:2023-04-15 Online:2023-05-12

摘要:

为保护工作人员的生命安全并提高冷接触环境下的作业效率,开发了一款智能防寒手套温控系统,利用织物冷接触测评装置分析冷接触过程中皮肤温度与加热片温度的变化,探究了控温方式、织物层数以及冷接触条件对智能防寒手套热舒适性的影响。结果表明:普通防寒手套和市面现有典型加热防寒手套未达到手部的保暖要求,所设计的智能防寒手套随着接触压力的增加,采用皮肤控温模式的智能防寒手套对应皮肤温度降低,但均可在不同接触温度和压力条件下使皮肤温度基本保持在舒适范围,达到安全舒适、操作方便、降低能耗的目的。

关键词: 智能温控系统, 防寒手套, 手部舒适性, 皮肤温度, 冷接触

Abstract:

Objective When working in a cold environment, people usually wear intelligent cold-proof gloves to compensate the lack of physiological heat regulation. The previous studies on electric heating gloves showed that there had been no temperature regulation based on skin temperature, and it was difficult to control accurately the heating pad. In addition, there had been few studies regarding simulation of the real operation of pressure states for cold contact state. In this research, a temperature-control system was designed and the thermal comfort performance of the cold-proof gloves was targeted for investigation.
Method The designed intelligent temperature-control system rapidly adjusts the heating power of the heating pad by comparing the skin temperature with the comfortable temperature of the human body. The skin-simulant sensor of the cold-contact test device was used to measure heat transfer through fabric system. The skin temperature changes during the cold contact were analyzed to explore the influence of modes of temperature control, heating temperatures, fabric layers and cold contact conditions on the thermal comfort performance of the cold-proof gloves.
Results As for the heating effect of the intelligent cold-proof gloves, skin discomfort, even frostbite occurred for no heating pad (Fig. 4). However, when the intelligent heating pad was used, the skin temperature was more stable. In terms of design factors of heating pad, when the mode of temperature control for human skin (STC) was adopted, the final skin temperature was stable around the comfort range. Compared with the mode of temperature control for the heating pad (HPTC), the skin temperature was more stable and closer to the comfortable temperature range (Tab. 4). At the same time, the temperature of the heating pad was reduced to a certain extent on the premise of ensuring the thermal comfort of the skin. Therefore, energy consumption was considered to be effectively reduced (Fig. 6). In an extremely low temperature environment, the intelligent heating pad greatly improved the thermal comfort performance of the gloves and reduced the number of fabric layers, meeting the requirements of skin comfort and flexible operation (Fig. 7). With decrease of the contact temperature, the physiological discomfort was aggravated and the time to reach the skin discomfort gradually became shorter (Fig. 8(a)). After using the heating pad, the final skin temperature is basically stable within the comfortable temperature range of the skin, which ensures the long-term thermal comfort requirements of the skin (Fig. 8(b)). The final stable skin temperature was higher for 0 kPa pressure than that for 3 kPa pressure. When the heating pad was used, the change of the skin temperature was contrary to no heating pad. Besides, the skin temperature was higher for 3 kPa pressure than that for 0 kPa pressure (Fig. 9). However, the intelligent heating pad for the double-layer fabric system worked to maintain the skin temperature and ensure the skin thermal comfort under 0 kPa and 3 kPa pressures.
Conclusion An intelligent temperature control system was developed and the influence of heating pad design and fabric layer number on skin temperature change in different cold contact conditions was investigated based on the cold-contact test device of fabric. The designed intelligent cold-proof gloves with the STC mode can keep the skin temperature stable in the comfortable temperature range during cold contact. Two modes of temperature control for the heating pad (HPTC) and human skin (STC) were compared, considering the thickness, temperature control and power consumption, and the STC mode seems to be the better heating choice. With the increase of fabric layers, the thermal comfort performance of the intelligent cold-proof gloves is improved. However, according to the different fabric layers, the intelligent cold-proof gloves with skin temperature control mode can achieve thermal comfort. Furthermore, the intelligent cold proof gloves can keep the skin temperature in the comfortable temperature range under different experimental pressures to ensure the thermal comfort of the skin.

Key words: intelligent temperature-control system, cold-proof glove, hand comfort ability, skin temperature, cold contact

中图分类号: 

  • TS941

图1

智能温控系统结构框图"

图2

智能温控系统硬件图"

表1

单层织物基本信息"

织物结构 纤维成分 织物结构 面密度/(g·cm-2) 厚度/mm 标准回潮率/%
外层 聚酯纤维 平纹 1.82×10-2 0.28 3.06
中间层 聚氨酯 非织造布 0.87×10-2 1.69 0.19
保暖层 新雪丽棉 非织造布 1.34×10-2 1.29 1.03
发热层 碳纤维 非织造布 3.75×10-2 1.75 0.86
舒适层 聚酯纤维 平纹单面绒毛 0.95×10-2 0.40 1.88

表2

手套织物系统配置"

加热片
类型
织物系统
层数
控温方式 档位/℃ 对应编号
无加热
片(H0)
双层 - - H0-D
三层 - - H0-T
四层 - - H0-F
普通加热
片(H1)
双层 - - H1-D
智能加热
片(H2)
双层 HP 30 H2-HP30-D
35 H2-HP35-D
40 H2-HP40-D
SK 35 H2-SK35-D
三层 SK 35 H2-SK35-T

图3

织物冷接触测试仪"

表3

皮肤表面温度与生理响应的关系"

皮肤表面温度/℃ 皮肤生理响应
34~36 热舒适
小于18 冷痛感(皮肤组织的灵活性下降)
小于12 麻木感(逐渐丧失触觉)
小于8 丧失痛觉
小于0.6 出现冻伤症状

图4

不同接触温度下各手套皮肤温度变化曲线"

图5

不同接触温度下加热设置温度对皮肤温度的影响"

表4

加热片控温与皮肤控温模式的加热效果对比"

冷接触温度/℃ 控温模式 最终稳定温度/℃ 温度极差/℃
10 H2-HP35-D 37.66 2.98
H2-SK35-D 37.44 0.43
5 H2-HP35-D 35.07 3.67
H2-SK35-D 35.98 0.68
0 H2-HP35-D 30.04 3.1
H2-SK35-D 33.47 0.31
-5 H2-HP35-D 29.89 3.59
H2-SK35-D 30.65 2.59

图6

-15 ℃下不同层数织物系统皮肤温度变化曲线"

图7

不同接触温度下皮肤温度变化曲线"

图8

不同压力下皮肤温度变化曲线"

[1] MA N, LU Y, XU F, et al. Development and performance assessment of electrically heating gloves with smart temperature control function[J]. International Journal of Occupational Safety & Ergonomics Jose, 2020, 26(1): 46-54.
[2] LI D, YUAN X, QIAN L, et al. The research of EMU glove heating system[J]. Aerospace Science & Technology, 2004, 8(2): 93-99.
[3] DOLEZ P I. Gloves for protection from cold weather[J]. Textiles for Cold Weather Apparel, 2009, 1(1): 374-398.
[4] 张海洲, 陈晓. 低温环境下手部温度主动加热技术的研究[J]. 中国个体防护装备, 2008, 1(2): 16-18.
ZHANG Haizhou, CHEN Xiao. Research on hand active-heating technology under low temperature conditions[J]. China Personal Protective Equipment, 2008, 1(2): 16-18.
[5] 郑兆和, 伍伟新. 电加热服装的电学安全性和发热功能性评价方法[J]. 山东纺织科技, 2017, 58(4): 22-25.
ZHENG Zhaohe, WU Weixin. Evaluation method for electrical safety and heating function of electrically-heated garment[J]. Shandong Textile Science & Technology, 2017, 58(4): 22-25.
[6] ISERSON K V. Glove and mitten protection in extreme cold weather: an antarctic study[J]. International Journal of Circumpolar Health, 2016, 75(1): 1-5.
[7] MCCORMACK A C, WEBBON B W. Testing of Electrically Heated Gloves for Cold Environments[C]// Waylon C T. International Conference on Environmental Systems. Savannah: Fer Publishing, 2012: 72-96.
[8] TABARESTANI F, MOUSAZADEGAN F, EZAZSHAHABI N. Assessment of the thermal insulation properties of multilayered mittens considering the airflow speed[J]. International Journal of Clothing Science and Technology, 2021, 33(2): 218-231.
doi: 10.1108/IJCST-01-2020-0007
[9] BRAJKOVIC D, DUCHARME M. Finger dexterity, skin temperature, and blood flow during auxiliary heating in the cold[J]. Journal of Applied Physiology, 2003, 95(2): 758-770.
pmid: 12730145
[10] 王璐, 韩雪, 娄琳, 等. 电热防护手套研制及其在极端寒冷环境下的工效实验[J]. 纺织学报, 2021, 42(5): 150-154,161.
WANG Lu, HAN Xue, LOU Lin, et al. Development of electric-heating protective gloves and ergonomic experiments under extreme cold environment[J]. Journal of Textile Research, 2021, 42(5):150-154,161.
doi: 10.1177/004051757204200303
[11] 马妮妮, 许凡菲, 卢业虎, 等. 温控电热防护手套研制与性能评价[J]. 现代纺织技术, 2018, 26(5): 26-33.
MA Nini, XU Fanfei, LU Yehu, et al. Development and performance evaluation of electrically heated protective gloves with thermoregulation function[J]. Advanced Textile Technology, 2018, 26(5): 26-33.
[12] 林垂涛. 基于单片机的昆虫加热板温度测控系统设计[D]. 陕西: 西北农林科技大学, 2011: 12-29.
LIN Chuitao. Design of insect's heating block temperature measuring and controlling system based on SCM[D]. Shaanxi: Northwest A&F University, 2011: 12-29.
[13] WEI Y, SU Y, LI J, et al. A test device to characterize cold-contact protective performance of fabrics[J]. Journal of Industrial Textiles, 2021, 5(1): 1-19.
[14] YUN M H, KOTANI K, ELLIS D. Using force sensitive resistors to evaluate hand tool grip design[J]. Proceedings of the Human Factors & Ergonomics Society Annual Meeting, 1992, 36(10): 806-810.
[15] 边晨璐, 陆静怡, 苏云. 冷接触条件下织物热传递及皮肤冻伤模型[J]. 上海纺织科技, 2022, 50(7): 9-12, 48.
BIAN Chenlu, LU Jingyi, SU Yun. Predictive model of heat transfer in fabric and skin frostbite under cold contact exposure[J]. Shanghai Textile Science & Technology, 2022, 50(7): 9-12, 48.
[16] LEHMUSKALLIO E, HASSI J, KETTUNEN P, et al. The skin in the cold[J]. International Journal of Circumpolar Health, 2002, 61(3): 277-286.
pmid: 12369118
[17] 张丹英, 钟祥彬, 刘嘉鑫, 等. 健康青年人群指端温度觉阈值影响因素分析[J]. 中国职业医学, 2021, 48(3): 329-333.
ZHANG Danying, ZHONG Xiangbin, LIU Jiaxin, et al. Analysis of influencing factors of fingertip thermotactile perception threshold in healthy young adults[J]. China Occupational Medicine, 2021, 48(3): 329-333.
[1] 陈莹, 宋泽涛, 郑晓慧, 姜延, 常素芹. 蒸发型降温服的降温性能研究[J]. 纺织学报, 2022, 43(11): 141-147.
[2] 张昭华, 陈之瑞, 李璐瑶, 肖平, 彭浩然, 张钰涵. 人体局部皮肤的气流敏感性及其影响因素[J]. 纺织学报, 2021, 42(12): 125-130.
[3] 牛梦雨, 潘姝雯, 戴宏钦, 吕凯敏. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(07): 144-150.
[4] 黄倩倩, 李俊. 环境温度突变时人体热感觉变化机制研究进展[J]. 纺织学报, 2020, 41(04): 188-194.
[5] 郑晴, 王宏付, 柯莹, 李爽. 相变降温矿工服的设计与评价[J]. 纺织学报, 2020, 41(03): 124-129.
[6] 赵蒙蒙 宋晓霞. 通风服装对人体热舒适的影响[J]. 纺织学报, 2017, 38(10): 94-97.
[7] 王云仪, 赵蒙蒙. 高温强辐射下相变降温背心的热调节作用客观测评[J]. 纺织学报, 2012, 33(5): 101-105.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!