纺织学报 ›› 2023, Vol. 44 ›› Issue (06): 33-40.doi: 10.13475/j.fzxb.20220306901

• 纤维材料 • 上一篇    下一篇

SnO2/聚乙烯吡咯烷酮防腐薄膜的制备及其在柔性铝-空气电池中的应用

史豪秦1, 于影2(), 左雨欣3, 刘宜胜1, 左春柽2   

  1. 1.浙江理工大学 机械与自动控制学院, 浙江 杭州 310018
    2.嘉兴学院 信息科学与工程学院, 浙江 嘉兴 314001
    3.嘉兴南湖学院, 浙江 嘉兴 314001
  • 收稿日期:2022-03-21 修回日期:2022-11-17 出版日期:2023-06-15 发布日期:2023-07-20
  • 通讯作者: 于影
  • 作者简介:史豪秦(1997—),男,硕士生。主要研究方向为功能纤维。
  • 基金资助:
    浙江省自然科学基金项目(LQ20E040007);浙江省自然科学基金项目(LGG21E050021);嘉兴市应用性基础研究专项(2020AY10015);嘉兴市应用性基础研究专项(2019AY11019);嘉兴市应用性基础研究专项(2020AD10015)

Preparation of SnO2/polyvinylpyrrolidone anti-corrosive membrane and its application in flexible Al-air battery

SHI Haoqin1, YU Ying2(), ZUO Yuxin3, LIU Yisheng1, ZUO Chuncheng2   

  1. 1. School of Mechanical Engineering and Automation, Zhejiang Sci-Tech University, Hangzhou, Zhejiang 310018, China
    2. College of Information Science and Engineering, Jiaxing University, Jiaxing, Zhejiang 314001, China
    3. Jiaxing Nanhu University, Jiaxing, Zhejiang 314001, China
  • Received:2022-03-21 Revised:2022-11-17 Published:2023-06-15 Online:2023-07-20
  • Contact: YU Ying

摘要:

为减缓柔性铝-空气电池阳极析氢腐蚀,将纳米二氧化锡(SnO2)和聚乙烯吡咯烷酮(PVP)均匀分散在无水乙醇中作为前驱体溶液,通过静电纺丝技术制备成SnO2/PVP薄膜,将附着薄膜的铝箔处理后用作柔性铝-空气电池的阳极。对SnO2/PVP薄膜进行表征和测试,并探究SnO2在薄膜中的含量变化对腐蚀抑制率和电池性能的影响。结果表明:SnO2/PVP薄膜能有效抑制铝-空气电池阳极析氢腐蚀,腐蚀抑制率随SnO2含量的增加而提高;相比于不添加防腐蚀薄膜的电池,SnO2质量分数为50%时电池腐蚀抑制率可达62.1%,放电时间延长2.4倍左右,阳极比容量可提高1.5倍以上。

关键词: 防腐蚀薄膜, 析氢腐蚀, SnO2, 聚乙烯吡咯烷酮, 柔性铝-空气电池, 静电纺丝

Abstract:

Objective With the update and iteration of material science and energy technology, the demand for portable wearable electronics is increasing. Therefore, flexible electronic energy storage equipment is particularly important. Flexible Al-air battery can be used as energy storage devices for wearable electronic products due to their excellent characteristics of flexibility and low cost. However, hydrogen evolution corrosion of metal anode of flexible Al-air battery is serious in alkaline environment, which results in uneven anode consumption and battery bulge, shortening battery life and reducing the corrosion of hydrogen evolution of anode.
Method In order to slow down the hydrogen evolution corrosion in the anode of flexible Al-air batteries, nano tin dioxide (SnO2) and polyvinylpyrrolidone (PVP) were uniformly dispersed in absolute ethanol as the precursor solution, then the SnO2/PVP membrane were prepared by electrospinning. The membrane-attached aluminum foils served as the anodes for Al-air batteries. SnO2/PVP membrane were characterized and tested by X-ray diffraction(XRD), scanning electron microscope(SEM), contact angle, hydrogen evolution test, Tafel, EIS and battery performance test, and the effect of SnO2content on corrosion inhibition rate and battery performance were also explored.
Results XRD and SEM showed that the SnO2/PVP thin membrane had clear composition (Fig. 4), and SnO2 nanoparticles were embedded into PVP fibers (Fig. 5). Through the self-made experimental device test, hydrogen evolution rate and hydrogen evolution amount of aluminum foil with functional membrane decreased significantly (Fig. 7). The hydrogen generation rate ratio of the two groups of experimental data with the largest difference reached 3 times. Then we tested the dynamic polarization curves of the potential of aluminum anodes attached with different membranes in 2 mol/L KOH solution, and obtained the corresponding corrosion current density (Tab. 1). When pure aluminum was used as anode, the corrosion current density was 0.29 mA/cm2. With the mass fraction of SnO2 increased to 40% and 50%, the corrosion current density decreased to 0.14 mA/cm2 and 0.11 mA/cm2, and the corrosion inhibition rate increased to 51.7% and 62.1%, respectively. The result is in good agreement with that of hydrogen evolution rate experiment. The battery performance test and the discharge curve is shown as follows: the discharge voltages of the three cells with the anti-corrosion membrane decreased slightly, but the discharge times of the cells with the 50% SnO2/PVP membrane reached 168 min and 127 min respectively at the discharge densities of 3 mA/cm2 and 5 mA/cm2. Compared with pure aluminum anode aluminum-air battery (70 min and 53 min), the utilization rate of aluminum anode metal was increased by 140.0% and 139.6%, respectively. The specific capacity of the battery was positively correlated with the content of SnO2 in the membrane. Although the anti-corrosion membrane improves the anti-corrosion performance and specific capacity, it sacrifices a certain power density (as indicated in Fig. 10). However, it can still be applied to low-power flexible electronic devices and expand the application of flexible batteries.
Conclusion SnO2 nanoparticles are embedded into PVP fiber by electrospinning process, and aluminum foil is used as the receiving base to successfully prepare anti-corrosion membrane suitable for flexible Al-air batteries. A flexible Al-air battery was designed and manufactured, the SnO2/PVP membrane had an obvious inhibition on the hydrogen evolution corrosion of the anode of Al-air battery, and the discharge time of the fabricated flexible battery increased with the increase of the mass percentage of SnO2 (within a certain range). Under the action of anti-corrosion membrane, the battery power density decreased slightly, but the prepared flexible Al-air battery was still suitable for small power flexible electronic equipment, expanding the application of flexible batteries.

Key words: anti-corrosion membrane, hydrogen evolution corrosion, SnO2, polyvinylpyrrolidone, flexible Al-air battery, electrospinning

中图分类号: 

  • TQ340.64

图1

前驱体溶液配制及静电纺丝示意图"

图2

自制析氢测试装置"

图3

柔性电池结构示意图及实物图"

图4

SnO2/PVP薄膜的XRD图"

图5

SnO2/PVP薄膜的扫描电镜照片"

图6

SnO2/PVP薄膜的接触角"

图7

不同薄膜作用下铝阳极的析氢量曲线"

图8

不同薄膜作用下铝阳极的Tafel曲线"

表1

不同薄膜的孔隙率及腐蚀抑制效果"

材料 Ecorr/V Jcorr/
(mA·cm-2)
P/% η/%
Al -1.73 0.29
25% SnO2/PVP -1.92 0.22 58.1 24.1
40% SnO2/PVP -1.85 0.14 45.9 51.7
50% SnO2/PVP -1.90 0.11 34.1 62.1

图9

不同薄膜作用下铝阳极的阻抗曲线和等效电路图"

图10

柔性铝-空气电池性能"

[1] 方剑, 任松, 张传雄, 等. 智能可穿戴纺织品用电活性纤维材料[J]. 纺织学报, 2021, 42(9): 1-9.
FANG Jian, REN Song, ZHANG Chuanxiong, et al. Electroactive fibrous materials for intelligent wearable textiles[J]. Journal of Textile Research, 2021, 42(9): 1-9.
doi: 10.1177/004051757204200101
[2] 钱鑫, 苏萌, 李风煜, 等. 柔性可穿戴电子传感器研究进展[J]. 化学学报, 2016, 74(7): 565-575.
doi: 10.6023/A16030156
QIAN Xin, SU Meng, LI Fengyu, et al. Research progress in flexible wearable electronic sensors[J]. Acta Chimica Sinica, 2016, 74(7): 565-575.
doi: 10.6023/A16030156
[3] 张林, 李至诚, 郑钦元, 等. 基于静电纺丝的柔性各向异性应变传感器的制备及其性能[J]. 纺织学报, 2021, 42(5): 38-45.
ZHANG Lin, LI Zhicheng, ZHENG Qinyuan, et al. Preparation and performance of flexible and anisotropic strain sensor based on electrospinning[J]. Journal of Textile Research, 2021, 42(5): 38-45.
[4] 汪延成, 鲁映彤, 丁文, 等. 柔性触觉传感器的三维打印制造技术研究进展[J]. 机械工程学报, 2020, 56(19): 239-252.
doi: 10.3901/JME.2020.19.239
WANG Yancheng, LU Yingtong, DING Wen, et al. Recent progress on three-dimensional printing processes to fabricate flexible tactile sensors[J]. Chinese Journal of Mechanical Engineering, 2020, 56(19): 239-252.
[5] 陈足娇, 张睿, 卓雯雯, 等. 可穿戴足底压力监测系统研究进展[J]. 纺织学报, 2021, 42(9): 31-38.
CHEN Zujiao, ZHANG Rui, ZHUO Wenwen, et al. Research progress in wearable plantar pressure monitoring system[J]. Journal of Textile Research, 2021, 42(9): 31-38.
[6] YANG M, LIU Y, SUN J, et al. Integration of partially phosphatized bimetal centers into trifunctional catalyst for high-performance hydrogen production and flexible Zn-air battery[J]. Science China Materials, 2022, 65(5): 1176-1186.
doi: 10.1007/s40843-021-1902-2
[7] 滕浩天, 王文涛, 韩晓峰, 等. 柔性锌-空气电池进展与展望[J]. 物理化学学报, 2023, 39(1): 19-34
TENG Haotian, WANG Wentao, HAN Xiaofeng, et al. Recent development and perspectives of flexible Zinc-Air batteries[J]. Acta Physico-Chimica Sinica, 2023, 39(1): 19-34
[8] ZHUANG Z, YAN F, PENG C, et al. Effect of Ga on microstructure and electrochemical performance of Al-0.4Mg-0.05Sn-0.03Hg alloy as anode for Al-air batteries[J]. Transactions of Nonferrous Metals Society of China, 2021, 31(9): 2558-2569.
doi: 10.1016/S1003-6326(21)65675-3
[9] LI D, WANG B, LONG X, et al. Controlled asymmetric charge distribution of active centers in conjugated polymers for oxygen reduction[J]. Angewandte Chemie International Edition, 2021, 60(51): 26483-26488.
doi: 10.1002/anie.v60.51
[10] LONG X, LI D, WANG B, et al. Heterocyclization strategy for construction of linear conjugated polymers: efficient metal-free electrocatalysts for oxygen reduction[J]. Angewandte Chemie, 2019, 131(33): 11491-11495.
[11] 许超. 铝空气电池电解液添加剂的研究[D]. 哈尔滨: 哈尔滨工业大学, 2018: 19-29.
XU Chao. Study on electrolyte additives for aluminum air battery[D]. Harbin: Harbin Institute of Technology, 2018: 19-29.
[12] 范丽珍, 刘永畅. 静电纺丝制备钠离子电池微纳电极材料研究进展[J]. 硅酸盐学报, 2017, 45(10): 1382-1391.
FAN Lizhen, LIU Yongchang. Research progress on micro/nano-electrode materials for sodium-ion batteries prepared by electrospinning[J]. Journal of the Chinese Ceramic Society, 2017, 45(10): 1382-1391.
[13] 王诚, 邱平达, 蔡克迪, 等. 铝空气电池关键技术研究进展[J]. 化工进展, 2016, 35(5): 1396-1403.
WANG Cheng, QIU Pingda, CAI Kedi, et al. Research progress of the key technologies for aluminum air battery[J]. Chemical Industry and Engineering Progress, 2016, 35(5): 1396-1403.
[14] JIA H, WANG Z, TAWIAH B, et al. Recent advances in zinc anodes for high-performance aqueous Zn-ion batteries[J]. Nano Energy, 2020, 70: 1-5.
[15] MACDONALD D D, ENGLISH C. Development of anodes for aluminum/air batteries: solution phase inhibition of corrosion[J]. Journal of Applied Electrochemistry, 1990, 20(3): 405-417.
doi: 10.1007/BF01076049
[16] LU F, YANG J, ZHOU L, et al. Enhanced electrochemical performance and mechanism study of AgLi1/3Sn2/3O2 for lithium storage[J]. Chinese Chemical Letters, 2019, 30(12): 2017-2020.
doi: 10.1016/j.cclet.2019.04.019
[17] WONGRUJIPAIROJ K, POOLNAPOL L, ARPORNWICHANOP A, et al. Suppression of zinc anode corrosion for printed flexible zinc-air battery[J]. Physica Status Solidi (B), 2017, 254(2): 1-7.
[18] 奚红雪, 刘新刚, 张楚虹. 静电纺丝法制备自支撑二氧化锡/碳复合柔性电极及其在锂离子电池中的应用[J]. 高分子材料科学与工程, 2019, 35(6): 87-93.
XI Hongxue, LIU Xingang, ZHANG Chuhong. Electro-spun free-standing flexible SnO2/carbon composite electrode for lithium-ion battery application[J]. Polymeric Materials Science and Engineering, 2019, 35(6): 87-93.
[19] REN J, MA J, ZHANG J, et al. Electrochemical performance of pure Al, Al-Sn, Al-Mg and Al-Mg-Sn anodes for Al-air batteries[J]. Journal of Alloys and Compounds, 2019.DOI: 10.1016/j.jallcom.2019.151708.
doi: 10.1016/j.jallcom.2019.151708
[20] BOŠKOVIĆ M V, SARAJLIĆ M, FRANTLOVIĆ M, et al. Aluminum-based self-powered hyper-fast miniaturized sensor for breath humidity detection[J]. Sensors and Actuators B: Chemical, 2020, 321: 128635-128654.
[21] 田忠良, 汪滔, 周言根, 等.一种铝空气电池电解液及其制备方法与应用:202110620022.8[P]. 2021-07-20.
TIAN Zhongliang, WANG Tao, ZHOU Yangen, et al. The invention relates to an aluminum-air battery electrolyte and a preparation method and application: 202110620022.8[P]. 2021-07-20.
[22] ZUO Y, YU Y, LIU H, et al. Electrospun Al2O3 film as inhibiting corrosion interlayer of anode for solid aluminum-air batteries[J]. Batteries, 2020, 6(1): 19.
doi: 10.3390/batteries6010019
[23] 王嘉乐, 王越锋, 左雨欣, 等. 静电纺丝制备铝-空气电池阳极防腐薄膜[J]. 表面技术, 2021, 50(12): 364-371.
WANG Jiale, WANG Yuefeng, ZUO Yuxin, et al. Preparation of anti-corrosion film for Al-air battery anode by electrospinning[J]. Surface Technology, 2021, 50(12): 364-371.
[1] 王青弘, 王迎, 郝新敏, 郭亚飞, 王美慧. 静电纺聚酰胺纳米纤维复合织物制备工艺优化[J]. 纺织学报, 2023, 44(06): 144-151.
[2] 贾姣, 郑作保, 吴昊, 徐乐, 刘熙, 董凤春, 贾永堂. 静电纺聚合物复合金属有机框架功能纳米纤维膜的研究进展[J]. 纺织学报, 2023, 44(06): 215-224.
[3] 王赫, 王洪杰, 赵紫奕, 张晓婉, 孙冉, 阮芳涛. 多孔与连通结构碳纳米纤维电极的设计及其电化学性能[J]. 纺织学报, 2023, 44(06): 41-49.
[4] 周歆如, 范梦晶, 胡铖烨, 洪剑寒, 刘永坤, 韩潇, 赵晓曼. 喷丝速率对连续水浴静电纺纳米纤维包芯纱结构与性能的影响[J]. 纺织学报, 2023, 44(06): 50-56.
[5] 杜迅, 陈莉, 何劲, 李晓娜, 赵美奇. 具有伤口监测功能的比色传感纳米纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(05): 70-76.
[6] 李好义, 贾紫初, 刘宇亮, 谭晶, 丁玉梅, 杨卫民, 牟文英. 高压静电加载形式对聚合物熔体静电直写制备效果的影响[J]. 纺织学报, 2023, 44(04): 32-37.
[7] 张少月, 岳江昱, 杨家乐, 柴晓帅, 冯增国, 张爱英. 环境友好聚己内酯基复合相变纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 11-18.
[8] 陈萌, 何瑞东, 程怡昕, 李纪伟, 宁新, 王娜. 磁控溅射银/锌改性聚苯乙烯/聚偏氟乙烯复合纤维膜的制备及其性能[J]. 纺织学报, 2023, 44(03): 19-27.
[9] 杨广鑫, 张庆乐, 李小超, 李思瑜, 陈辉, 程璐, 夏鑫. 热诱导熔接聚氨酯/聚二甲基硅氧烷防水透湿膜的制备及其性能优化[J]. 纺织学报, 2023, 44(03): 28-35.
[10] 葛铖, 郑元生, 刘凯, 辛斌杰. 电压对静电纺串珠纤维成形过程的影响[J]. 纺织学报, 2023, 44(03): 36-41.
[11] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[12] 周歆如, 胡铖烨, 范梦晶, 洪剑寒, 韩潇. 双针头连续水浴静电纺的电场模拟及其纳米纤维包芯纱结构[J]. 纺织学报, 2023, 44(02): 27-33.
[13] 周文, 俞建勇, 张世超, 丁彬. 基于绿色溶剂的聚酰胺纳米纤维膜制备及其空气过滤性能[J]. 纺织学报, 2023, 44(01): 56-63.
[14] 张长欢, 李纤纤, 张力冉, 李德阳, 李念武, 吴红艳. 磷酸铁锂/炭黑/碳纳米纤维柔性正极的制备及其性能[J]. 纺织学报, 2022, 43(11): 16-21.
[15] 吴焕岭, 谢周良, 汪阳, 孙万超, 康正芳, 徐国华. 胶原蛋白改性聚乳酸-羟基乙酸载药纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(11): 9-15.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!