纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 8-15.doi: 10.13475/j.fzxb.20220306908

• 纤维材料 • 上一篇    下一篇

海岛纤维用增塑改性聚乙烯醇的制备及其性能

王双华1,2, 王冬1,2, 付少海1,2(), 仲鸿天3, 董朋3   

  1. 1.江苏省纺织品数字喷墨印花工程技术研究中心, 江苏 无锡 214122
    2.生态纺织教育部重点实验室(江南大学), 江苏 无锡 214122
    3.江苏聚杰微纤科技集团股份有限公司, 江苏 苏州 215200
  • 收稿日期:2022-03-18 修回日期:2022-12-09 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 付少海(1972—),男,教授,博士。主要研究方向为高分子材料改性。E-mail:shaohaifu@hotmail.com
  • 作者简介:王双华(1996—),女,硕士生。主要研究方向为聚乙烯醇的改性及其在海岛纤维中的应用。
  • 基金资助:
    全国博士后管委会香江学者计划项目(XJ2021020)

Preparation and properties of plasticized polyvinyl alcohol for sea-island fiber production

WANG Shuanghua1,2, WANG Dong1,2, FU Shaohai1,2(), ZHONG Hongtian3, DONG Peng3   

  1. 1. Jiangsu Engineering Research Center for Digital Textile Inkjet Printing, Wuxi, Jiangsu 214122, China
    2. Key Laboratory of Eco-Textiles (Jiangnan University), Ministry of Education, Wuxi, Jiangsu 214122, China
    3. Jiangsu Jujie Microfiber Technology Group Co., Ltd., Suzhou, Jiangsu 215200, China
  • Received:2022-03-18 Revised:2022-12-09 Published:2023-04-15 Online:2023-05-12

摘要:

为解决海岛纤维碱减量带来的环境污染问题,以双季戊四醇、硬脂酸钙和抗氧剂B225为复配增塑剂,对聚乙烯醇(PVA)进行增塑改性,通过熔融加工制备了高热分解温度的改性PVA。通过研究三者的添加量及熔融加工温度对PVA性能的影响,优化PVA的增塑改性工艺。对 PVA与复配增塑剂之间的氢键作用、 改性PVA的断面形貌、结晶结构进行了表征和分析。结果表明:当双季戊四醇、硬脂酸钙和抗氧剂B225的质量占比分别为15、3和1,熔融加工温度为200 ℃时,复配增塑剂与 PVA之间的氢键作用较强, PVA结晶度降低,熔点降低到178.2 ℃,热分解温度提高到301.3 ℃,提供了123.1 ℃的加工窗口;改性PVA水溶性良好,在25 ℃下也能完全溶解。研究结果为实现以PVA为海组分的绿色环保海岛纤维的制备提供参考和技术支持。

关键词: 聚乙烯醇, 熔融加工, 高热分解温度, 增塑改性, 水溶性, 海岛纤维

Abstract:

Objective Sea-island fibers, which are mostly prepared by melt composite spinning, are favored by the textile industry due to the excellent properties and high added value. Alkali-soluble polyester (COPET) is the common sea component of PVA to be removed by alkali decrement method that will cause environmental pollution. Polyvinyl alcohol (PVA) is expected to replace COPET as the sea component to solve environmental pollution, because it is green, non-toxic and water-soluble.
Method Due to amounts of strong intermolecular/intramolecular hydrogen bonds of PVA, the melting point is approximate to the thermal decomposition temperature, which leads to difficulty for melt processing. Modified PVA with high thermal decomposition temperature was prepared by melt blending with compound plasticizers, which consisted of dipentaerythritol, calcium stearate and irganox B225. The effects of compound plasticizers on thermal properties and fluidity of PVA were investigated by DSC, TG and melt flow rate. The suitable processing temperature of PVA was obtained by torque rheometer. The intermolecular hydrogen bonds, crystallinity and compatibility of modified PVA were analyzed by FT-IR, XRD and SEM.
Results The melt-forming property and thermostability of PVA were improved obviously via introducing compound plasticizers. When the contents of dipentathritol, calcium stearate and irganox B225 were 15%, 3%, and 1%, respectively, the thermal decomposition temperature of modified PVA was up to 301.3 ℃ and the melting point reduced to 178.2 ℃ (Fig. 1, Fig. 3 and Fig. 5), providing a thermal processing window of 123.1 ℃. The modified PVA showed a transparent appearance due to its good melt fluidity and outstanding oxidation resistance (Fig. 2, Fig. 4 and Fig. 6). The plasticization and melt fluidity of modified PVA were significantly enhanced with the increase of melting processing temperature (ranging from 195 to 210 ℃). Obviously, when the processing temperature reached up to 200 ℃, the modified PVA could be well plasticized (Tab. 2). The compound plasticizers could effectively destroy the intramolecular and/or intermolecular hydrogen bonds of PVA and reconstructed the fresh hydrogen bonds with PVA, reflected by the shift of absorption peak (Fig. 7). Interestingly, the compound plasticizers improved greatly the activity of PVA molecular chain, thereby reducing its crystallinity (Fig. 8). Addition, the cross section of the modified PVA was observed by scanning electron microscope (SEM). There were almost no obvious plasticizer particles precipitation, and some tiny particles were dispersed uniformly in PVA matrix without agglomeration, which indicated good compatibility between the composite plasticizers and PVA (Fig. 9). Furthermore, the resulting modified PVA could still be melt extruded smoothly at 250 ℃, which provided feasibility for melt composite spinning with PET. Particularly, it is unexpected that the modified PVA could be dissolved at 25 ℃ (Tab. 3), which demonstrates good water solubility, creating many opportunities for the subsequent alkali-free fiber opening process of sea-island fiber.
Conclusion The modified PVA was prepared by melting process and its compound plasticizer composed of dipentaerythritol, calcium stearate and irganox B225.The effects of compound plasticizers and processing temperature on the properties of PVA were investigated to optimize its plasticizing modification process. The compound plasticizers can effectively destroy the hydrogen bonds among PVA molecules and enhance the activity of PVA molecular chain to reduce its crystallinity and melting point. Meanwhile, the fresh hydrogen bonds between PVA and the compound plasticizer enhance the stability of PVA hydroxyl group, thereby improving the thermal stability of PVA. In conclusion, the modified PVA has excellent thermostability and melt fluidity as well as water solubility, providing reference and technical support for the preparation of sea-island fiber with PVA as the sea component.

Key words: polyvinyl alcohol, melt processing, high thermal decomposition temperature, plasticizing modification, water solubility, sea-island fiber

中图分类号: 

  • TQ325.9

表1

样品参数表"

样品编号 m(PVA ):m(双季戊四醇):
m(硬脂酸钙):m(抗氧剂B225 )
1# 100:7.5:3:1
2# 100:10:3:1
3# 100:12.5:3:1
4# 100:15:3:1
5# 100:17.5:3:1
6# 100:20:3:1
7# 100:15:0:1
8# 100:15:1:1
9# 100:15:2:1
10# 100:15:4:1
11# 100:15:5:1
12# 100:15:3:0
13# 100:15:3:0.5
14# 100:15:3:0.75
15# 100:15:3:1.25
16# 100:15:3:1.5

图1

PVA与不同双季戊四醇含量的改性PVA的DSC和TG曲线"

图2

双季戊四醇含量对改性PVA熔体流动速率的影响"

图3

PVA与不同硬脂酸钙含量的改性PVA的DSC和TG曲线"

图4

硬脂酸钙含量对改性PVA熔体流动速率的影响"

图5

PVA与不同抗氧剂含量的改性PVA的DSC和TG曲线"

图6

不同抗氧剂质量占比的改性PVA粒子的外观比较"

表2

加工温度对改性PVA加工性能的影响"

加工温
度/℃
转速/
(r·min-1)
塑化转矩/
(N·m)
平衡转矩/
(N·m)
开始熔融
时间/min
塑化时
间/min
195 50 18.31 15.94 1.67 2.63
200 50 17.27 14.76 1.52 2.41
205 50 15.69 13.73 1.40 2.23
210 50 14.81 13.12 1.35 2.11

图7

PVA与改性PVA的红外谱图"

图8

PVA与改性PVA的 XRD 图"

图9

PVA与改性PVA的扫描电镜照片"

表3

改性PVA(4#)的水溶性"

样品质量/g 水量/mL 水温/℃ 溶解时间/min
1 100 25 97
1 100 40 70
1 100 50 58
1 100 60 41
1 100 70 32
[1] 高阳俊. 海岛型超细复合纤维开纤剥离废水资源化技术研究[D]. 上海: 东华大学, 2006:10-24.
GAO Yangjun. Research on the resource recovery from island-sea fabric alkaline hydrolysis wastewater[D]. Shanghai: Donghua University, 2006:10-24.
[2] 俞小春, 陈少鹏, 林金平, 等. 海岛纤维结构形态与染色性能的研究[J]. 厦门大学学报(自然科学版), 2007(1): 67-71.
YU Xiaochun, CHEN Shaopeng, LIN Jinping, et al. Study on structural morphology and dyeing properties of sea-island Fibers[J]. Journal of Xiamen Univer-sity(Natural Science), 2007(1): 67-71.
[3] 许守清. 海岛纤维水溶性聚酯的制备技术[J]. 安徽科技, 2015(10): 41-42.
XU Shouqing. Preparation technology of sea-island fiber water-soluble polyester[J]. Anhui Science & Technology, 2015(10): 41-42.
[4] 杨文娟, 郭秉臣. 海岛纤维碱减量法溶解海组分[J]. 产业用纺织品, 2005(4): 26-29.
YANG Wenjuan, GUO Bingchen. Sea-island fiber alkali reduction method to dissolve sea components[J]. Technical Textiles, 2005(4): 26-29.
[5] 曹意, 陈韶娟, 尹德河, 等. 碱溶性涤纶/锦纶6海岛纤维各组分性能解析[J]. 纺织学报, 2018, 39(9): 15-21.
CAO Yi, CHEN Shaojuan, YIN Dehe, et al. Analysis on components properties of alkali-soluble polyester/polyamide 6 sea island fiber[J]. Journal of Textile Research, 2018, 39(9): 15-21.
doi: 10.1177/004051756903900103
[6] 白红军. 改性聚乙烯醇新型纺丝工艺研究[D]. 北京: 北京服装学院, 2014:11-36.
BAI Hongjun. Study on modified poly(vinyl alcohol) fibers prepared by a new kind of spinning[D]. Beijing: Beijing Institute of Fashion Technology, 2014:11-36.
[7] LI F Y, XIA H S. Dopamine-functionalized poly(vinyl alcohol) elastomer with melt processability and self-healing properties[J]. Journal of Applied Polymer Science, 2017. DOI: 10.1002/app.45072.
doi: 10.1002/app.45072
[8] 周海霞. 水溶性聚酯海岛纤维的研究[D]. 上海: 东华大学, 2004:1-48.
ZHOU Haixia. The study of water-solubility polyester sea-island fiber[D]. Shanghai: Donghua University, 2004:1-48.
[9] LU H W, ZOU L M, XU Y J, et al. Preparation and study of poly vinyl alcohol/hyperbranched polylysine fluorescence fibers via wet spinning[J]. Materials Research Express, 2018. DOI :10.1088/2053-1591/aaaedc.
doi: 10.1088/2053-1591/aaaedc
[10] ZHU Y, WU C X, ZHANG Y W, et al. Study on the chain entanglement of polyvinyl alcohol fiber during the dry-jet wet spinning process[J]. Fibers and Polymers, 2015, 16(2): 345-353.
doi: 10.1007/s12221-015-0345-x
[11] 管福成, 郭静, 吕丽华, 等. 聚乙烯醇/磷虾蛋白纤维的氢键作用机制及其性能[J]. 纺织学报, 2020, 41(10): 7-13.
GUAN Fucheng, GUO Jing, LÜ Lihua, et al. Hydrogen bonding mechanism and properties of polyvinyl alcohol/krill protein fibers[J]. Journal of Textile Research, 2020, 41(10): 7-13.
[12] 俞昊, 周腾飞, 黄涛, 等. 水溶性聚乙烯醇的熔融纺丝[J]. 合成纤维, 2013, 42(8): 17-20.
YU Hao, ZHOU Tengfei, HUANG Tao, et al. Melt spinning of water-soluble polyvinyl alcohol[J]. Synthetic Fiber in China, 2013, 42(8): 17-20.
[13] 董振峰, 王锐, 李革, 等. LDPE/PA6海岛复合超细纤维的可纺性及性能研究[J]. 合成纤维工业, 2014, 37(4): 15-18.
DONG Zhenfeng, WANG Rui, LI Ge, et al. Spinnability and properties of LDPE/PA6 sea-island composite superfine fiber[J]. China Synthetic Fiber Industry, 2014, 37(4): 15-18.
[14] 王雷, 陈俊伟, 任凤梅, 等. 增塑剂改性聚乙烯醇的熔融加工性能研究[J]. 塑料科技, 2012, 40(11): 53-56.
WANG Lei, CHEN Junwei, REN Fengmei, et al. Study on melting processing properties of the modified polyvinyl alcohol with plasticizers[J]. Plastics Science and Technology, 2012, 40(11): 53-56.
[15] CHEN G, CHEN N, LI L, et al. Ionic liquid modified poly(vinyl alcohol) with improved thermal processability and excellent electrical conductivity[J]. Industrial & Engineering Chemistry Research, 2018, 57(15): 5472-5481.
doi: 10.1021/acs.iecr.8b00157
[16] XU Y J, XU Y Q, SUN C K, et al. The preparation and characterization of plasticized pva fibres by a novel glycerol/pseudo ionic liquids system with melt spinning method[J]. European Polymer Journal, 2020. DOI:10.1016/j.eurpolymj.2020.109768.
doi: 10.1016/j.eurpolymj.2020.109768
[17] 麻聪. 聚乙烯醇的增塑改性研究[D]. 上海: 东华大学, 2017: 18-43.
MA Cong. Study on plasticization of polyvinyl alco-hol[D]. Shanghai: Donghua University, 2017: 18-43.
[18] 唐龙祥, 张瑜, 刘春华, 等. 复合增塑体系对聚乙烯醇加工性能的影响[J]. 合成树脂及塑料, 2010, 27(4): 38-40.
TANG Longxiang, ZHANG Yu, LIU Chunhua, et al. Influence of compound plasticizing system on processing properties of polyvinyl alcohol[J]. China Synthetic Resin and Plastics, 2010, 27(4): 38-40.
[19] 李发勇, 谢东, 沈华艳, 等. 聚甘油增塑改性聚乙烯醇复合膜性能研究[J]. 塑料科技, 2019, 47(7): 70-73.
LI Fayong, XIE Dong, SHEN Huayan, et al. Study on properties of PVA film plasticized by polyglycerol[J]. Plastics Science and Technology, 2019, 47(7): 70-73.
[20] 张纪成. 聚乙烯醇的熔融加工性能研究[D]. 合肥: 合肥工业大学, 2013: 1-56.
ZHANG Jicheng. Studies on melt-processing properties of polyvinyl alcohol[D]. Hefei: Hefei University of Technology, 2013: 1-56.
[21] 陈金爱, 马玫, 苑丽红. 塑料中增塑剂迁移测试方法的研究进展[J]. 合成材料老化与应用, 2008, 37(4): 21-26, 47.
CHEN Jinai, MA Mei, YUAN Lihong. Research progress on test methods on migration of plasticisers in plastics[J]. Synthetic Materials Aging and Application, 2008, 37(4): 21-26, 47.
[22] 朱晓翔. 环保型增塑剂的合成及其对橡胶增塑作用的研究[D]. 广州: 华南理工大学, 2017: 24-29.
ZHU Xiaoxiang. Synthesis of environmental plasticizerand its plasticization study in rubber[D]. Guangzhou: South China University of Technology, 2017: 24-29.
[23] 吴建亭. 涤纶海岛纤维生产工艺分析[J]. 聚酯工业, 2011, 24(1): 33-35.
WU Jianting. Analysis on the production process of polyester sea-island fiber[J]. Polyester Industry, 2011, 24(1): 33-35.
[1] 邢剑, 张书诚, 于天娇, 唐文斌, 王亮, 徐珍珍, 梁波涛. 废弃聚苯硫醚纤维的回收再利用研究进展[J]. 纺织学报, 2023, 44(04): 222-229.
[2] 李方, 潘航, 章耀鹏, 马慧婕, 沈忱思. 印染废水中聚乙烯醇浆料的高效去除及六价铬的协同还原[J]. 纺织学报, 2023, 44(03): 147-157.
[3] 周泠卉, 曾佩, 鲁瑶, 付少举. 聚乙烯醇纳米纤维膜/罗纹空气层织物复合吸声材料的制备及其性能[J]. 纺织学报, 2023, 44(03): 73-78.
[4] 解开放, 罗凤香, 包新军, 周衡书, 徐广标. 高耐磨性复合涂层涤纶通丝的制备及其性能[J]. 纺织学报, 2022, 43(03): 123-131.
[5] 沈忱思, 王曼, 徐晨烨, 王华平, 李方. 退浆废水中自由基引发的聚乙烯醇交联沉淀研究[J]. 纺织学报, 2021, 42(11): 117-123.
[6] 姜生, 吉利梅. 聚乙烯醇增强氯化聚乙烯-受阻酚阻尼复合材料的制备及其性能[J]. 纺织学报, 2021, 42(04): 55-61.
[7] 管福成, 郭静, 吕丽华, 谭倩, 宋敬星, 张欣. 聚乙烯醇/磷虾蛋白纤维的氢键作用机制及其性能[J]. 纺织学报, 2020, 41(10): 7-13.
[8] 胡铖烨, 缪润伍, 韩潇, 洪剑寒, GIL Ignacio. 聚乙烯醇对芳纶复合纱聚苯胺导电层耐久性影响[J]. 纺织学报, 2020, 41(04): 91-97.
[9] 万雨彩, 刘迎, 王旭, 易志兵, 刘轲, 王栋. 聚乙烯醇-乙烯共聚物纳米纤维增强聚丙烯微米纤维复合空气过滤材料的结构与性能[J]. 纺织学报, 2020, 41(04): 15-20.
[10] 易领, 张何, 傅昕, 李雯. 石墨烯基锆钛复合材料改性棉织物的制备及其远红外发射性能[J]. 纺织学报, 2020, 41(01): 102-109.
[11] 沈艳琴, 杨树, 武海良, 王忠梁. 浆纱用中低温水溶性淀粉浆料的研究进展[J]. 纺织学报, 2019, 40(06): 142-151.
[12] 付译鋆 安琪 张伟 张瑜 柯惠珍. 壳聚糖基纳米纤维载药体系及其缓释行为[J]. 纺织学报, 2018, 39(12): 7-12.
[13] 潘玉婷 李方 沈忱思 陈洪腾 刘艳彪 肖冬雪. 退浆废水中聚乙烯醇的膜蒸馏-超滤二级膜浓缩[J]. 纺织学报, 2018, 39(11): 96-102.
[14] 王宗乾 杨海伟 汤立洋 李长龙. 丝素蛋白/聚乙烯醇复合膜的制备及其表征[J]. 纺织学报, 2018, 39(11): 14-19.
[15] 曹意 陈韶娟 尹德河 曹洪花 马建伟. 碱溶性涤纶/锦纶6海岛纤维各组分性能解析[J]. 纺织学报, 2018, 39(09): 15-21.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!