纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 217-224.doi: 10.13475/j.fzxb.20220307302
吕红丽1, 罗丽娟2, 师建军2, 郑振荣1(), 李红晨1
LÜ Hongli1, LUO Lijuan2, SHI Jianjun2, ZHENG Zhenrong1(), LI Hongchen1
摘要:
传统二氧化硅气凝胶隔热性能优异、制备工艺成熟,但固有的脆性严重限制了其推广使用。阐述了近年来硅气凝胶柔性增强方面的研究进展,通过详细分析现有柔性增强研究中存在的问题,提出组分增强时要通过适当选择硅烷前驱体,并将其与有机聚合物或纤维复合来构建柔性网络骨架,实现化学结构和网络骨架的调控;在工艺优化方面,详细介绍了仿生干燥技术和3D打印技术2种新工艺。最后,根据柔性气凝胶的未来发展方向,对突破常压干燥技术、开展聚合物交联或纳米纤维增强制备结构有序可控的柔性复合气凝胶进行了展望。
中图分类号:
[1] |
PIERRE A C, PAJONK G M. Chemistry of aerogels and their applications[J]. Chemical Reviews, 2002, 102 (11): 4243-4265.
pmid: 12428989 |
[2] |
DU A, WANG H, ZHOU B, et al. Multifunctional silica nanotube aerogels inspired by polar bear hair for light management and thermal insulation[J]. Chemistry of Materials, 2018, 30 (19): 6849-6857.
doi: 10.1021/acs.chemmater.8b02926 |
[3] |
ZHAO X, WANG W, WANG Z, et al. Flexible PEDOT: PSS/polyimide aerogels with linearly responsive and stable properties for piezoresistive sensor applications[J]. Chemical Engineering Journal, 2020. DOI: 10.1016/j.cej.2020.125115.
doi: 10.1016/j.cej.2020.125115 |
[4] |
ABDULLAH H B, IRMAWATI R, ISMAIL I, et al. Direct synthesis of carbon nanotube aerogel using floating catalyst chemical vapor deposition: effect of gas flow rate[J]. Chemical Papers, 2020, 74 (10): 3359-3365.
doi: 10.1007/s11696-020-01166-6 |
[5] | HUANG D M, GUO C N, ZHANG M Z, et al. Characteristics of nanoporous silica aerogel under high temperature from 950 ℃ to 1 200 ℃[J]. Materials & Design, 2017, 129: 82-90. |
[6] | 蒋璐璐, 邓梦, 王云仪, 等. 气凝胶材料在消防服中的应用研究进展[J]. 纺织学报, 2021, 42(9): 187-194. |
JIANG Lulu, DEBG Meng, WANG Yunyi, et al. Research progress on application of aerogel materials in firefighting clothing[J]. Journal of Textile Research, 2021, 42(9): 187-194. | |
[7] |
GYORI E, VARGA A, FABIAN I, et al. Supercritical CO2 extraction and selective adsorption of aroma materials of selected spice plants in functionalized silica aerogels[J]. The Journal of Supercritical Fluids, 2019, 148: 16-23.
doi: 10.1016/j.supflu.2019.02.025 |
[8] |
LI M Z, JIA L C, ZHANG X P, et al. Robust carbon nanotube foam for efficient electromagnetic interference shielding and microwave absorption[J]. Journal of Colloid and Interface Science, 2018, 530: 113-119.
doi: 10.1016/j.jcis.2018.06.052 |
[9] | 盛宇, 徐丽慧, 孟云, 等. 用SiO2/TiO2复合气凝胶制备超疏水光催化防紫外线织物[J]. 纺织学报, 2019, 40(7): 90-96. |
SHENG Yu, XU Lihui, MENG Yun, et al. Preparation of superhydrophobic, photocatalytic and UV-blocking textiles based on SiO2/TiO2 composite aerogels[J]. Journal of Textile Research, 2019, 40(7): 90-96. | |
[10] |
WANG Q, YU H, ZHANG Z Y, et al. One-pot synthesis of polymer-reinforced silica aerogels from high internal phase emulsion templates[J]. Journal of Colloid and Interface Science, 2020, 573: 62-70.
doi: S0021-9797(20)30419-7 pmid: 32259693 |
[11] |
VENKATARAMAN M, MISHRA R, KOTRESH T M, et al. Aerogels for thermal insulation in high-performance textiles[J]. Textile Progress, 2016, 48 (2): 55-118.
doi: 10.1080/00405167.2016.1179477 |
[12] |
MALFAIT W J, ZHAO S Y, VEREL R, et al. Surface chemistry of hydrophobic silica aerogels[J]. Chemistry of Materials, 2015, 27 (19): 6737-6745.
doi: 10.1021/acs.chemmater.5b02801 |
[13] |
BAETENS R, JELLE B P, GUSTAVSEN A. Aerogel insulation for building applications: a state-of-the-art review[J]. Energy and Buildings, 2011, 43 (4): 761-769.
doi: 10.1016/j.enbuild.2010.12.012 |
[14] |
LI C D, CHEN Z F, DONG W F, et al. A review of silicon-based aerogel thermal insulation materials: performance optimization through composition and microstructure[J]. Journal of Non-Crystalline Solids 2021. DOI: 10.1016/j.jnoncrysol.2020.120517.
doi: 10.1016/j.jnoncrysol.2020.120517 |
[15] |
PADMANABHAN S K, Ul HAQ E, LICCIULLI A, et al. Synthesis of silica cryogel-glass fiber blanket by vacuum drying[J]. Ceramics International, 2016, 42(6): 7216-7222.
doi: 10.1016/j.ceramint.2016.01.113 |
[16] |
TORRES R B, VAREDA J P, LAMY-MENDES A, et al. Effect of different silylation agents on the properties of ambient pressure dried and supercritically dried vinyl-modified silica aerogels[J]. The Journal of Supercritical Fluids, 2019, 147: 81-89.
doi: 10.1016/j.supflu.2019.02.010 |
[17] |
WANG Y F, LI Z, HUBER L, et al. Reducing the thermal hazard of hydrophobic silica aerogels by using dimethyldichlorosilane as modifier[J]. Journal of Sol-Gel Science and Technology, 2020, 93 (1): 111-122.
doi: 10.1007/s10971-019-05170-5 |
[18] |
KARAMIKAMKAR S, NAGUIB H E, PARK C B. Advances in precursor system for silica-based aerogel production toward improved mechanical properties, customized morphology, and multifunctionality: a review[J]. Advances in Colloid and Interface Science, 2020. DOI: 10.1016/j.cis.2020.102101.
doi: 10.1016/j.cis.2020.102101 |
[19] |
WANK L K, FENG J Z, JIANG Y G, et al. Polyvinylmethyldimethoxysilane reinforced methyltrime-thoxysilane based silica aerogels for thermal insulation with super-high specific surface area[J]. Materials Letters, 2019. DOI: 10.1016/j.matlet.2019.126644.
doi: 10.1016/j.matlet.2019.126644 |
[20] |
RAO A V, BHAGAT S D, HIRASHIMA H, et al. Synthesis of flexible silica aerogels using methyltrimethoxysilane (MTMS) precursor[J]. Journal of Colloid and Interface Science, 2006, 300 (1): 279-285.
pmid: 16707131 |
[21] |
LIU C, WU S J, YANG Z F, et al. Mechanically robust and flame-retardant silicon aerogel elastomers for thermal insulation and efficient solar steam generation[J]. ACS Omega, 2020, 5 (15): 8638-8646.
doi: 10.1021/acsomega.0c00086 pmid: 32337427 |
[22] | HAYASE G, KANAMORI K, HASEGAWA G, et al. A superamphiphobic macroporous silicone monolith with marshmallow-like flexibility[J]. Angewandte Chemie, 2013, 52 (41): 10788-10791. |
[23] |
SHIMIZU T, KANAMORI K, NAKANISHI K. Silicone-based organic-inorganic hybrid aerogels and xerogels[J]. Chemistry: A European Journal, 2017, 23 (22): 5176-5187.
doi: 10.1002/chem.v23.22 |
[24] |
MALEKI H, DURAES L, PORTUGAL A, et al. Synthesis of lightweight polymer-reinforced silica aerogels with improved mechanical and thermal insulation properties for space applications[J]. Microporous and Mesoporous Materials, 2014, 197: 116-129.
doi: 10.1016/j.micromeso.2014.06.003 |
[25] |
CHOI H, PARALE V G, KIM T, et al. Structural and mechanical properties of hybrid silica aerogel formed using triethoxy (1-phenylethenyl) silane[J]. Microporous and Mesoporous Materials, 2020. DOI: 10.1016/j.micromeso.2020.110092.
doi: 10.1016/j.micromeso.2020.110092 |
[26] |
ZU G Q, KANAMORI K, MAENO A, et al. Superflexible multifunctional polyvinylpoly dimethylsiloxane-based aerogels as efficient absorbents, thermal superinsulators, and strain sensors[J]. Angewandte Chemie International Edition, 2018, 57(31): 9722-9727.
doi: 10.1002/anie.v57.31 |
[27] |
WU X D, MAN J W, LIU S J, et al. Isocyanate-crosslinked silica aerogel monolith with low thermal conductivity and much enhanced mechanical properties: fabrication and analysis of forming mechanisms[J]. Ceramics International, 2021, 47 (19): 26668-26677.
doi: 10.1016/j.ceramint.2021.06.074 |
[28] |
JAXEL J, MARKEVICIUS G, RIGACCI A, et al. Thermal superinsulating silica aerogels reinforced with short man-made cellulose fibers[J]. Composites Part A: Applied Science and Manufacturing, 2017, 103: 113-121.
doi: 10.1016/j.compositesa.2017.09.018 |
[29] |
KEHRLE J, PURKAIT T K, KAISER S, et al. Super-hydrophobic silicon nanocrystal-silica aerogel hybrid materials: synthesis, properties, and sensing appli-cation[J]. Langmuir, 2018, 34 (16): 4888-4896.
doi: 10.1021/acs.langmuir.7b03746 |
[30] |
AOKI Y, SHIMIZU T, KANAMORI K, et al. Low-density, transparent aerogels and xerogels based on hexylene-bridged polysilsesquioxane with bend-ability[J]. Journal of Sol-Gel Science and Technology, 2017, 81(1), 42-51.
doi: 10.1007/s10971-016-4077-1 |
[31] |
李健, 张恩爽, 刘圆圆, 等. 超低密度气凝胶的制备及应用[J]. 化学进展, 2020, 32(6): 713-726.
doi: 10.7536/PC191016 |
LI Jian, ZHANG Enshuang, LIU Yuanyuan, et al. Preparation of the ultralow density aerogel and its application[J]. Progress in Chemistry, 2020, 32(6): 713-726.
doi: 10.7536/PC191016 |
|
[32] |
LI H M, LI J H, THOMAS A, et al. Ultra-high surface area nitrogen-doped carbon aerogels derived from a schiff-base porous organic polymer aerogel for CO2 storage and supercapacitors[J]. Advanced Functional Materials, 2019. DOI:10.1002/adfm.201904785.
doi: 10.1002/adfm.201904785 |
[33] |
YU Z L, YANG N, APOSTOLOPOULOU- KALKAVOURA V, et al. Fire-retardant and thermally insulating phenolic-silica aerogels[J]. Angewandte Chemie-International Edition 2018, 57 (17): 4538-4542.
doi: 10.1002/anie.v57.17 |
[34] |
WANG X, LU L L, YU Z L, et al. Scalable template synthesis of resorcinol-formaldehyde/graphene oxide composite aerogels with tunable densities and mechanical properties[J]. Angewandte Chemie International Edition, 2015, 54 (8): 2397-2401.
doi: 10.1002/anie.201410668 |
[35] |
ZHANG R B, AN Z M, ZHAO Y, et al. Nanofibers reinforced silica aerogel composites having flexibility and ultra-low thermal conductivity[J]. International Journal of Applied Ceramic Technology, 2020, 17 (3): 1531-1539.
doi: 10.1111/ijac.v17.3 |
[36] |
UI Haq E, ZAIDI S F A, ZUBAIR M, et al. Hydrophobic silica aerogel glass-fibre composite with higher strength and thermal insulation based on methyltrimethoxysilane (MTMS) precursor[J]. Energy and Buildings, 2017, 151: 494-500.
doi: 10.1016/j.enbuild.2017.07.003 |
[37] |
HE J, ZHAO H Y, LI X L, et al. Large-scale and ultra-low thermal conductivity of ZrO2 fibrofelt/ZrO2-SiO2 aerogels composites for thermal insulation[J]. Ceramics International, 2018, 44(8): 8742-8748.
doi: 10.1016/j.ceramint.2018.01.089 |
[38] | 姚鸿俊, 王飞, 朱召贤, 等. 柔性有机硅气凝胶复合材料的制备及性能研究[J]. 宇航材料工艺, 2019, 49(6):26-32. |
YAO Hongjun, WANG Fei, ZHU Zhaoxian, et al. Preparation and properties of flexible silicone aerogel composites[J]. Aerospace Materials & Technology, 2019, 49(6):26-32. | |
[39] |
LI Z, CHENG X D, HE S, et al. Aramid fibers reinforced silica aerogel composites with low thermal conductivity and improved mechanical performance[J]. Composites Part A: Applied Science and Manufacturing, 2016, 84: 316-325.
doi: 10.1016/j.compositesa.2016.02.014 |
[40] |
LI X H, YANG Z C, SHAO H L, et al. The influence of chopped PI fibers on thermal, mechanical and sound insulation properties of methylsilsesquioxane aerogels[J]. Journal of Sol-Gel Science and Technology, 2022, 101:519-528.
doi: 10.1007/s10971-021-05701-z |
[41] |
FU J J, HE C X, HUANG J D, et al. Cellulose nanofibril reinforced silica aerogels: optimization of the preparation process evaluated by a response surface methodology[J]. RSC Advances, 2016, 6 (102): 100326-100333.
doi: 10.1039/C6RA20986F |
[42] |
SI Y, WANG X Q, DOU L Y, et al. Ultralight and fire-resistant ceramic nanofibrous aerogels with temperature-invariant superelasticity[J]. Science Advances, 2018. DOI: 10.1126/sciadv.aas8925.
doi: 10.1126/sciadv.aas8925 |
[43] |
PATIL S P, SHENDYE P, MARKERT B, et al. Mechanical properties and behavior of glass fiber-reinforced silica aerogel nanocomposites: insights from all-atom simulations[J]. Scripta Materialia, 2020, 177:65-68.
doi: 10.1016/j.scriptamat.2019.10.010 |
[44] |
CHENG H M XUE, HONG C Q, et al. Preparation, mechanical, thermal and ablative properties of lightweight needled carbon fibre felt/phenolic resin aerogel composite with a bird's nest structure[J]. Composites Science and Technology, 2017, 140:63-72.
doi: 10.1016/j.compscitech.2016.12.031 |
[45] | 乐弦, 陈俊勇, 李华鑫, 等. 气凝胶材料的结构强化研究进展[J]. 硅酸盐学报, 2021, 49(4):681-691. |
YUE Xian, CHEN Junyong, LI Huaxin, et al. Research progress in structure strengthening of aerogels[J]. Journal of The Chinese Ceramic Society, 2021, 49(4):681-691. | |
[46] | SMALLSHIRE D, SWASH A. Britain's dragonflies: a field guide to the damselflies and dragonflies of britain and ireland-fully revised and updated third edition[M]. 3rd ed. Princeton: Princeton University Press, 2014:194-196. |
[47] |
HAN X, HASSAN K T, HARVEY A, et al. Bioinspired synthesis of monolithic and layered aerogels[J]. Advanced Materials, 2018. DOI:10.1002/adma.201706294.
doi: 10.1002/adma.201706294 |
[48] |
CUCE E, CUCE P M, WOOD C J, et al. Optimizing insulation thickness and analysing environmental impacts of aerogel-based thermal superinsulation in buildings[J]. Energy and Buildings, 2014, 77:28-39.
doi: 10.1016/j.enbuild.2014.03.034 |
[49] |
IGLESIAS-MEJUTO A, GARCIA-GONZALEZ C A. 3D-printed alginate-hydroxyapatite aerogel scaffolds for bone tissue engineering[J]. Materials Science & Engineering C:Materials for Biological Applications, 2021. DOI: 10.1016/j.msec.2021.112525.
doi: 10.1016/j.msec.2021.112525 |
[50] |
LIU D P, CHEN C J, ZHOU Y B, et al. 3D-printed, high-porosity, high-strength graphite aerogel[J]. Small Methods, 2021. DOI: 10.1002/smtd.202001188.
doi: 10.1002/smtd.202001188 |
[51] |
TANG X W, ZHOU H, CAI Z C, et al. Generalized 3D printing of graphene-based mixed-dimensional hybrid aerogels[J]. ACS Nano, 2018, 12 (4): 3502-3511.
doi: 10.1021/acsnano.8b00304 pmid: 29613763 |
[52] |
ZHANG Q Q, ZHANG F, MEDARAMETLA S P, et al. 3D printing of graphene aerogels[J]. Small, 2016, 12(13): 1702-1708.
doi: 10.1002/smll.201503524 pmid: 26861680 |
[53] |
LI V C F, DUNN C K, ZHANG Z, et al. Direct ink write 3D printed cellulose nanocrystal aerogel structures[J]. Scientific Reports, 2017. DOI: 10.1021/acssuschemeng.7b03439.
doi: 10.1021/acssuschemeng.7b03439 |
[54] | MALEKI H, MONTES S, HAYATI-ROODBARI N, et al. Compressible, thermally insulating, and fire retardant aerogels through self-assembling silk fibroin biopolymers inside a silica structure: an approach towards 3D printing of aerogels[J]. ACS Applied Materials & Interfaces, 2018, 10 (26): 22718-22730. |
[55] | FARRELL E S, SCHILT Y, MOSHKOVITZ M Y, et al. 3D printing of ordered mesoporous silica complex structures[J]. American Chemical Society, 2020, 20, 6598-6605. |
[1] | 柳敦雷, 陆佳颖, 薛甜甜, 樊玮, 刘天西. 超疏水隔热聚酯纳米纤维/二氧化硅气凝胶复合膜的制备及其性能[J]. 纺织学报, 2023, 44(07): 18-25. |
[2] | 杜晗笑 郑振荣 曹森学 陈逢亮. 超疏水气凝胶涂层超高分子量聚乙烯织物的制备与表征[J]. 纺织学报, 2018, 39(04): 93-99. |
|