纺织学报 ›› 2023, Vol. 44 ›› Issue (08): 81-87.doi: 10.13475/j.fzxb.20220308101
WANG Xiaohu, PAN Ruru, GAO Weidong, ZHOU Jian()
摘要:
针对稀疏字典算法检测速度慢,无法满足实时检测需求的问题,提出了一种基于稀疏字典优化的疵点检测算法。首先采用一定尺寸的窗口对正常样本滑动取块进行学习得到字典库;然后对字典库进行分组优选,其策略是依据样本被近似的程度,按顺序分组挑选最优字典组;之后检测时选用字典组对织物图像求解系数并进行重构,得到重构图像及相应的残差图像,最后对残差图像进行疵点区域的判定。实验结果表明,此方法检测准确率平均可达96.22%,检出率高于无约束字典学习方法,图像大小为512像素×512像素时平均每张用时208 ms,为稀疏字典方法的0.26%,可达到在保证检测精度的同时仍具有实时性的效果。
中图分类号:
[1] | 吕文涛, 林琪琪, 钟佳莹, 等. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11):197-206. |
LÜ Wentao, LIN Qiqi, ZHONG Jiaying, et al. Research progress of image processing technology for fabric defect detection[J]. Journal of Textile Research, 2021, 42(11):197-206. | |
[2] | DIVYADEVI R, KUMAR B V. Survey of automated fabric inspection in textile industries[C]//2019 International Conference on Computer Communication and Informatics(ICCCI). Haikou:IEEE, 2019:1-4. |
[3] | GAO G, ZHANG D, LI C, et al. A novel patterned fabric defect detection algorithm based on GHOG and low-rank recovery[C]// IEEE 13th International Conference Signal Process(ICSP). New York: IEEE, 2016:1118-1123. |
[4] |
Ll C, GAO G, LIU Z, et al. Defect detection for patterned fabric images based on GHOG and low-rank decomposition[J]. IEEE Access, 2019, 7:83962-83973.
doi: 10.1109/Access.6287639 |
[5] |
ZHU D D, PAN R R, GAO W D, et al Yarn-dyed fabric defect detection based on autocorrelation function and GLCM[J]. Autex Res J, 2015, 15(3):226-232.
doi: 10.1515/aut-2015-0001 |
[6] | DEOTALE N T, SARODE T. Fabric defect detection adopting combined GLCM, gabor wavelet features and random decision forest[J]. Computer Science, 2019, 10(1):1-13. |
[7] | ARNIA F, MUNADI K. Real time textile defect detection using GLCM in DCT-based compressed images[C]// 2015 6th International Conference on Modeling, Simulation, and Applied Optimization. Sanya: IEEE, 2015:1-6. |
[8] | REBHI A, ABID S, FNAIECH F. Fabric defect detection using local homogeneity and morphological image processing[C]// 2016 International lmage Processing, Applications and Systems(IPAS). Hammamet: IEEE, 2016:1-5. |
[9] | 任欢欢, 景军锋, 张缓缓, 等. 应用GIS和FTDT的织物错花缺陷检测研究[J]. 激光与光电子学进展, 2019, 56(13):94-99. |
REN Huanhuan, JING Junfeng, ZHANG Huanhuan, et al. Cross-printing defect detection of printed fabric using GIS and FTDT[J]. Laser & Optoelectroniscs Progress, 2019, 56(13):94-99. | |
[10] |
LI Y D, ZHANG C. Automated vision system for fabric defect inspection using Gabor filters and PCNN[J]. SpringerPlus, 2016, 5(1):765.
doi: 10.1186/s40064-016-2452-6 pmid: 27386251 |
[11] | 厉征鑫, 周建, 潘如如, 等. 应用单演小波分析的织物疵点检测[J]. 纺织学报, 2016, 37(9): 59-64. |
LI Zhengxin, ZHOU Jian, PAN Ruru, et al. Fabric defect detection using monogenic wavelet analysis[J]. Journal of Textile Research, 2016, 37(9): 59-64. | |
[12] | 吴莹, 汪军, 周建. 基于离散余弦变换过完备字典的机织物纹理稀疏表征[J]. 纺织学报, 2018, 39(1):157-163. |
WU Ying, WANG Jun, ZHOU Jian. Sparse representation of woven fabric texture based on discrete cosine transform over-complete dictionary[J]. Journal of Textile Research, 2018, 39(1):157-163. | |
[13] | ZHOU J, SEMENOVICH D, SOWMYA A, et al. Sparse dictionary reconstruction for textile defect detection[C]// 2012 11th International Conference on Machine Learning and Applications. Florida: SSMC, 2012: 21-26,. |
[14] |
ZHU Z W, HAN G J, JIA G Y, et al. Modified dense net for automatic fabric defect detection with edge computing for minimizing latency[J]. IEEE Internet of Things Journal, 2020, 7(10):9623-9636.
doi: 10.1109/JIoT.6488907 |
[15] | FARNAZ F, MEHRAN Y, MOHAMMAD F. Face image super-resolution via sparse representation and wavelet transform[J]. Signal Image & Video Processing, 2018(13):1-8. |
[16] | LU T, LI S, FANG L, et al. Spectral-spatial adaptive sparse representation for hyperspectral image denoi-sing[J]. IEEE Transactions on Geoscience & Remote Sensing, 2016, 54(1):373-385. |
[1] | 戴宁, 梁汇江, 胡旭东, 戚栋明, 徐郁山, 屠佳佳, 史伟民. 插管式机器人空管状态检测方法[J]. 纺织学报, 2023, 44(11): 199-207. |
[2] | 闫本超, 潘如如, 周建, 王蕾, 王小虎. 基于改进Itti显著模型的织物疵点实时检测[J]. 纺织学报, 2023, 44(07): 95-102. |
[3] | 杨宏脉, 张效栋, 闫宁, 朱琳琳, 李娜娜. 一种高鲁棒性经编机上断纱在线检测算法[J]. 纺织学报, 2023, 44(05): 139-146. |
[4] | 李杨, 彭来湖, 李建强, 刘建廷, 郑秋扬, 胡旭东. 基于深度信念网络的织物疵点检测[J]. 纺织学报, 2023, 44(02): 143-150. |
[5] | 安亦锦, 薛文良, 丁亦, 张顺连. 基于图像处理的纺织品耐摩擦色牢度评级[J]. 纺织学报, 2022, 43(12): 131-137. |
[6] | 张东剑, 甘学辉, 杨崇倡, 韩阜益, 刘香玉, 谈渊, 廖壑, 王松林. 纺丝过程中非接触式纤维张力检测技术研究进展[J]. 纺织学报, 2022, 43(11): 188-194. |
[7] | 袁嫣红, 曾洪铭, 茅木泉. 基于图像处理的选针器检测系统[J]. 纺织学报, 2022, 43(10): 176-182. |
[8] | 邓中民, 胡灏东, 于东洋, 王文, 柯薇. 结合图像频域和空间域的纬编针织物密度检测方法[J]. 纺织学报, 2022, 43(08): 67-73. |
[9] | 马运娇, 王蕾, 潘如如, 高卫东. 基于平面镜成像的纱线条干三维合成校准方法[J]. 纺织学报, 2022, 43(07): 55-59. |
[10] | 周其洪, 彭轶, 岑均豪, 周申华, 李姝佳. 基于机器视觉的细纱接头机器人纱线断头定位方法[J]. 纺织学报, 2022, 43(05): 163-169. |
[11] | 张荣根, 冯培, 刘大双, 张俊平, 杨崇倡. 涤纶工业长丝毛丝在线检测系统的研究[J]. 纺织学报, 2022, 43(04): 153-159. |
[12] | 熊晶晶, 杨雪, 苏静, 王鸿博. 基于图像技术的织物导湿性能测试方法[J]. 纺织学报, 2021, 42(12): 70-75. |
[13] | 吕文涛, 林琪琪, 钟佳莹, 王成群, 徐伟强. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206. |
[14] | 刘国维, 潘如如, 高卫东, 周建. 基于总变差的织物疵点分割方法[J]. 纺织学报, 2021, 42(11): 64-70. |
[15] | 夏旭文, 孟朔, 潘如如, 高卫东. 基于改进帧间差分法的经纱撞筘拥纱在线检测[J]. 纺织学报, 2021, 42(06): 91-96. |
|