纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 95-102.doi: 10.13475/j.fzxb.20220308301

• 纺织工程 • 上一篇    下一篇

基于改进Itti显著模型的织物疵点实时检测

闫本超, 潘如如(), 周建, 王蕾, 王小虎   

  1. 江南大学 纺织科学与工程学院, 江苏 无锡 214122
  • 收稿日期:2022-03-24 修回日期:2022-10-09 出版日期:2023-07-15 发布日期:2023-08-10
  • 通讯作者: 潘如如(1982—),男,教授,博士。主要研究方向为数字化纺织技术。E-mail:prrsw@163.com
  • 作者简介:闫本超(1997—),男,硕士生。主要研究方向为数字化纺织技术。
  • 基金资助:
    国家自然科学基金项目(61976105);中国纺织工业联合会应用基础研究项目(J202006)

Real-time detection of fabric defects based on use of improved Itti salient model

YAN Benchao, PAN Ruru(), ZHOU Jian, WANG Lei, WANG Xiaohu   

  1. College of Textile Science and Engineering, Jiangnan University, Wuxi, Jiangsu 214122, China
  • Received:2022-03-24 Revised:2022-10-09 Published:2023-07-15 Online:2023-08-10

摘要:

为克服人工疵点检测存在精度差、效率低、易疲劳等问题,研发了基于改进Itti显著模型的织物疵点实时检测系统。首先设计了专用的织物传动和退绕系统,实现对布卷的精确传递,采用不同光源和多台工业相机拍摄实现织物的实时采集;然后通过基于改进的Itti显著性模型对图像进行快速检测,利用下采样构建图像金字塔,并对金字塔图像进行中央周边差操作,获得织物亮度特征;接着对各尺度金字塔图像进行不同方向Gabor滤波边缘检测获得织物方向特征,归一化亮度与方向特征获得织物疵点显著图;最后通过自定义阈值对显著图进行分割。实验结果表明:本文系统能有效检测出白坯布、牛仔布含有的油污、断经、破洞、纬缩等常见织物疵点,疵点检测正检率为93%,实时检测速度最高达48 m/min,能满足实时检测需求。

关键词: 疵点检测, 实时检测, Gabor滤波, 高斯金字塔, Itti显著性

Abstract:

Objective Conventional manual testing relies on the subjective experience and rating standards of inspectors to complete the appearance quality testing and evaluation of fabrics, which has problems such as backward productivity, poor detection accuracy, low efficiency and easy fatigue. Fabric defects automatic detection technology is one of the key links for textile enterprises to develop into intelligent manufacturing. Thus, this paper intends to develop a real-time detection system in order to achieve the automatic detection of fabric defects so as to overcome the disadvantages seen in manual detection.

Method The system adopts the motor drive to realize the fabric winding and the automatic transfer of the roll. Unwinding and transmission can be stably, with high automation and accuracy. In order to meet the different lighting requirements, three rows of LED lights are installed, and they have more lighting modes than other systems. Eight industrial cameras are arranged side by side to realize the image acquisition of the fabric. The acquired images were rapidly detected by the image defects based on an improved Itti salient model fault detection algorithm. The model has shorter detection time for fabric image and has higher accuracy, which can meet the real-time detection requirements of fabric defects.

Results The schematic diagram of the fabric image acquisition system is established (Fig. 1). The fabric is rewound by the motor and can be stably transmitted to the image acquisition area in a specific route. In the image acquisition area, fabric images of different thickness fabrics with different light sources are obtained (Fig. 3). It can be seen that the sharpness of the images taken by different light sources is different, which meets the detection requirements of different thickness fabrics. It also indicates that the installed camera has a high shooting definition. The images were detected based on the improved Itti salient model. Different directions can effectively extract the features of the fabric image and detect the edge information inside the image. The fabric fault significance graph is obtained by manipulating the normalized brightness and orientation feature, and the significant graph is divided by the custom threshold to effectively detect the defect information(Fig. 8, Fig. 9). It can effectively detect fabric defects in industrial grey fabric and denim, such as oil and holes. The defect detection rate is 93%. Compared with other fabric defect detection algorithms, the detection accuracy is higher. At the same time, it can be seen that the detection time of this method is short (Tab. 3), and the detection speed is 48 m/min. The real-time detection speed is further improved.

Conclusion In order to improve the disadvantages of the convenitional artificial fabric fault detection, a fabric image acquisition platform and a real-time fabric fault detection system based on the significance detection algorithm are proposed. The fabric platform can be driven by a motor, which is more stable than the previous roll transmission system and takes clearer photos. The improved significance detection algorithm detects the images and achieves good detection results. By comparison, the method has high detection accuracy and real-time performance, and the detection time of the algorithm meets the requirements of dynamic detection. The designed fabric real-time detection platform can run effectively and stably, and have higher real-time detection performance.

Key words: defect detection, real-time detection, Gabor filtering, Gaussian pyramid, Itti saliency

中图分类号: 

  • TS941.26

图1

织物疵点检测硬件平台示意图"

图2

不同方向光源配置"

图3

不同光源下织物图像"

图4

检测算法流程"

图5

金字塔图像"

图6

不同方向滤波融合图像"

图7

分割效果图"

表1

织物类型及参数"

织物
种类
密度/(根·
(10 cm)-1)
面密度/
(g·m-2)
织物组织 织物
特征
采集
光源
经纱 纬纱
纯棉
白坯布
470 196 110 平纹 轻薄、
易透光
投射光+
背光
纯棉蓝色
牛仔布
276 144 330 斜纹 厚重、透光
性差
投射光+
反射光

图8

工业生产白坯布检测结果"

图9

工业生产牛仔布检测结果"

表2

疵点类型及检测结果"

织物 疵点类型 疵点图像/张 检出量/张 漏检量/张 误检量/张


油污 20 20 0 0
断经 7 7 0 0
缺纬 5 4 1 0
破洞 8 8 0 0
褶皱 0 2 0 2
无疵点 10 10 0 0


错花 8 7 1 0
爆纬 26 21 1 0
纬缩 6 5 1 0
无疵点 10 7 3 0
总计 100 93 7 2

表3

不同方法检测结果对比"

算法 正检率/% 误检率/% 检测时间/(s·张-1)
文献[3] 82 18 0.150
文献[10] 91 9 0.950
文献[11] 95 5 0.750
文献[16] 82 18 0.510
本文方法 93 7 0.038

图10

测试图像及各方法的疵点检测结果"

[1] SONG Shaojun, JING Junfeng, HUANG Yanqing, et al. Efficient det for fabric defect detection based on edge computing[J]. Journal of Engineered Fibers and Fabrics, 2021, 16:1-13.
[2] 朱磊, 任梦凡, 潘杨, 等. 基于相似性定位和超像素分割的织物疵点检测[J]. 纺织学报, 2020, 41(10):58-66.
ZHU Lei, REN Mengfan, PAN Yang, et al. Fabric defect detection based on similarity location and superpixel segmentation[J]. Journal of Textile Research, 2020, 41(10):58-66.
[3] 占竹, 汪军. 基于字典学习的机织物疵点图像等级评定研究[J]. 毛纺科技, 2019, 47(1):80-85.
ZHAN Zhu, WANG Jun. Study on image grading of woven fabric defect based on dictionary learning[J]. Wool Textile Journal, 2019, 47(1):80-85.
[4] CHANG Haifeng. Design and implementation of real-time fabric defect detection system[J]. Advances in information Sciences and Service Sciences, 2012, 4(21):23-30.
[5] WEI Wei, DENG Dexiang, ZENG Lin, et al. Realtime implementation of fabric defect detection based on variational automatic encoder with structure similarity[J]. Journal of Real-Time Image Processing, 2021, 18(3):807-823.
doi: 10.1007/s11554-020-01023-5
[6] CHEN Mengqi, YU Lingjie, ZHI Chao, et al. Improved faster R-CNN for fabric defect detection based on Gabor filter with genetic algorithm optimization[J]. Computers in Industry, 2022(134):1-10.
[7] 李文羽, 程隆棣. 基于机器视觉和图像处理的织物疵点检测研究新进展[J]. 纺织学报, 2014, 35(3):158-164.
LI Wenyu, CHENG Longdi. New progress of fabric defect detection based on computer vision and image process-ing[J]. Journal of Textile Research, 2014, 35(3):158-164.
[8] 刘荣清. 织物疵点自动检测系统的发展和展望[J]. 棉纺织技术, 2017, 45(10):13-15.
LIU Rongqing. Development and prospect of fabric defect automatic inspecting system[J]. Cotton Textile Technology, 2017, 45(10):13-15.
[9] ITTI Laurent, KOCH Christof, NIEBUR Ernst. A model of saliency-based visual attention for rapid scene analysis[J]. IEEE Transactions on Pattern Analysis & Machine Intelligence, 1998, 20(11):1254-1259.
[10] GUAN Shenqi, GAO Zhaoyuan. Fabric defect image segmentation based on the visual attention mechanism of the wavelet domain[J]. Textile Research Journal, 2014, 84(10):1018-1033.
doi: 10.1177/0040517513517964
[11] 周文明, 周建, 潘如如. 应用遗传算法优化Gabor滤波器的机织物疵点检测[J]. 东华大学学报(自然科学版), 2020, 46(4):535-541.
ZHOU Wenming, ZHOU Jian, PAN Ruru. Woven fabric defect detection using Gabor filter optimized by genetic algorithm[J]. Journal of Donghua University(Natural Science), 2020, 46(4):535-541.
[12] 杨宏珊. 织物疵点检测系统组件及选择[J]. 中国纤检, 2021(4):118-120.
YANG Hongshan. Components and selections of fabric defect detection system[J]. China Fiber Inspection, 2021(4):118-120.
[13] 王传桐, 胡峰, 徐启永, 等. 采用Gabor滤波簇和等距映射算法的织物疵点检测方法[J]. 纺织学报, 2017, 38(3):163-167.
WANG Chuantong, HU Feng, XU Qiyong, et al. Detection of fabric defects based on Gabor filters and Isomap[J]. Journal of Textile Research, 2017, 38(3):163-167.
[14] SARKAR A, PADMAVATHI S. Image pyramid for automatic segmentation of fabric defects[J]. Lecture Notes in Computational Vision and Biomechanics, 2018, 28:569-578.
[15] MA Shuangbao, LIU Wen, YOU Changli, et al. An improved defect detection algorithm of jean fabric based on optimized Gabor filter[J]. Journal of Information Processing Systems, 2020, 16(5):1008-1014.
[16] JING Junfeng, ZHANG Min, ZHANG Huanhuan, et al. A coarse-to-fine method for glass fiber fabric surface defect detection[J]. Journal of The Textile Institute, 2021, 112(3):388-397.
doi: 10.1080/00405000.2020.1758454
[1] 付晗, 胡峰, 龚杰, 余联庆. 面向织物疵点检测的缺陷重构方法[J]. 纺织学报, 2023, 44(07): 103-109.
[2] 李杨, 彭来湖, 李建强, 刘建廷, 郑秋扬, 胡旭东. 基于深度信念网络的织物疵点检测[J]. 纺织学报, 2023, 44(02): 143-150.
[3] 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227.
[4] 吕文涛, 林琪琪, 钟佳莹, 王成群, 徐伟强. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206.
[5] 李东洁, 郭帅, 杨柳. 基于改进图像阈值分割算法的纱线疵点检测[J]. 纺织学报, 2021, 42(03): 82-88.
[6] 朱磊, 任梦凡, 潘杨, 李博涛. 基于相似性定位和超像素分割的织物疵点检测[J]. 纺织学报, 2020, 41(10): 58-66.
[7] 狄岚, 杨达, 梁久祯, 马明寅. 基于图元分割与Gabor滤波的织物瑕疵检测方法[J]. 纺织学报, 2020, 41(09): 59-66.
[8] 周文明, 周建, 潘如如. 应用上下文视觉显著性的色织物疵点检测[J]. 纺织学报, 2020, 41(08): 39-44.
[9] 杨恩君, 廖义辉, 刘安东, 俞立. 基于低秩分解的织物疵点检测[J]. 纺织学报, 2020, 41(05): 72-78.
[10] 张缓缓, 马金秀, 景军锋, 李鹏飞. 基于改进的加权中值滤波与K-means聚类的织物缺陷检测[J]. 纺织学报, 2019, 40(12): 50-56.
[11] 杜帅, 李岳阳, 王孟涛, 罗海驰, 蒋高明. 基于改进局部自适应对比法的织物疵点检测[J]. 纺织学报, 2019, 40(02): 38-44.
[12] 吕汉明 吴擎擎 吕鑫 马崇启 周鹏飞. 基于数据库的环锭纺细纱机细纱断头检测与信息显示[J]. 纺织学报, 2018, 39(04): 123-129.
[13] 王传桐 胡峰 徐启永 吴雨川 余联庆. 改进频率调谐显著算法在疵点辨识中的应用[J]. 纺织学报, 2018, 39(03): 154-160.
[14] 袁嫣红 马天宇 项宏年. 电磁选针器实时检测系统[J]. 纺织学报, 2018, 39(03): 143-147.
[15] 何峰 周亚同 赵翔宇 刘猛 张忠伟. 纹理织物疵点窗口跳步形态学法检测[J]. 纺织学报, 2017, 38(10): 124-131.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!