纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 243-250.doi: 10.13475/j.fzxb.20220308702

• 综合述评 • 上一篇    下一篇

个体降温服优化设计对其降温效果影响的研究进展

赵辰1, 王敏1,2, 李俊1,2,3()   

  1. 1.东华大学 服装与艺术设计学院, 上海 200051
    2.现代服装设计与技术教育部重点实验室(东华大学), 上海 200051
    3.上海市纺织智能制造与工程一带一路国际联合实验室, 上海 200051
  • 收稿日期:2022-03-25 修回日期:2022-11-07 出版日期:2023-09-15 发布日期:2023-10-30
  • 通讯作者: 李俊(1970—),男,教授,博士。主要研究方向为服装舒适性与功能防护服装。E-mail:lijun@dhu.edu.cn
  • 作者简介:赵辰(1998—),女,硕士生。主要研究方向为服装舒适性及功能服装。
  • 基金资助:
    中央高校基本科研业务费专项资金资助项目(2232022G-08);上海市科学技术委员会“科技创新行动计划”“一带一路”国际合作项目(21130750100)

Review on optimal design of personal cooling garments on cooling effect

ZHAO Chen1, WANG Min1,2, LI Jun1,2,3()   

  1. 1. College of Fashion and Design, Donghua University, Shanghai 200051, China
    2. Key Laboratory of Clothing Design &Technology (Donghua University), Ministry of Education, Shanghai 200051, China
    3. Shanghai Belt and Road Joint Laboratory of Textile Intelligent Manufacturing, Shanghai 200051, China
  • Received:2022-03-25 Revised:2022-11-07 Published:2023-09-15 Online:2023-10-30

摘要:

为探索个体降温服的功能设计方法,对国内外降温服降温效果的影响因素研究进行了综述。从降温服的工作原理入手,分别从冷却介质和服装的优化设计展开探讨,总结各设计要素对降温服降温效果及人体热湿舒适性的影响,并对比不同参数的作用效应。分析认为:个体降温服的功能设计应在全面分析作业环境和人体活动的基础上,根据人体实际热量散失的需求,对冷却介质的用量、特征参数、组合应用,织物性能,服装结构进行综合优化设计,并依据不同类型的冷却介质有所侧重。未来,可通过数值参数化研究为冷却介质与服装的优化配置提供更为科学的依据和准确的指导,同时降温系统冷却效率的优化提升将成为个体降温服功能设计的重要发展方向。

关键词: 个体降温服, 功能设计, 冷却介质, 基础服装, 降温效果, 热湿舒适性

Abstract:

Significance Heat stress is one of the main health and safety threats for occupational workers when they engage in high-intensity physical labor in hot work scenes, and personal cooling garments (PCG) have been developed to reduce the risk of heat stress and heat-related injuries in hot environments. The cooling effect of PCG is chiefly evaluated by indicators such as cooling duration, cooling rate and human thermal and wet comfort, which are comprehensively affected by factors such as cooling media, basic garments, environment and human activities, reflecting the complexity of the functional design. However, previous studies focused on the cooling mechanism of the cooling media, ignoring supercooling caused by excessive cooling. In addition, basic garments carrying the cooling system for improving cooling effect and human thermal and wet comfort have not been fully considered. This has affected the establishment of the functional design method and system of PCG. Therefore, it is necessary to refine the design essentials for different media to meet different cooling needs, so as to establish a more accurate procedure for the functional PCG design.

Progress Researchers have conducted in-depth research on the factors that affect the cooling effect of PCG and human thermal and wet comfort, from the perspectives including environment, cooling media, basic garments and human activity. The functional design of PCG are considered from two aspects, i.e. the cooling media and the basic garments attached to them. Comparative studies on the characteristics of different types of cooling media, including the cooling methods, advantages and disadvantages of ventilation, liquid and phase change materials. The amount, temperature, humidity and mixed use of the cooling media have a great impact on the cooling effect of PCG and the thermal and wet comfort of the human body. However, insufficient attention was paid to the supercooling of the human body caused by excessive cooling, in contrast to the much increased attention to the cooling time of the cooling system. The auxiliary heat dissipation and moisture removal effect of basic garment fabric and structure design on PCG cannot be ignored as stressed by the researchers, were the fabric performance in heat insulation, air permeability, elasticity and moisture permeability, as well as the clothing structure design attributes such as clothing openings, styles and dimensions are all important. However, there is a lack of in-depth research on the configuration of fabrics and structures.

Conclusion and Prospect The functional design of personal cooling garments can be carried out from two aspects: cooling media and basic garments. The optimization cooling media design can be carried out in association of the media quantity, characteristic parameters, and mixed applications. The quantity and characteristic parameters of each cooling medium have primary and secondary effects on the cooling effect of PCG, and they can be adjusted according to the cooling demands. Under the premise of complementary advantages, the selection of hybrid cooling media should associated to appropriate application scenarios and appropriate cooling strategies. In the design of basic garments, the heat insulation performance, air permeability, elasticity, moisture permeability of fabrics, as well as the opening, style and size design of clothing should be considered separately, and the selection of fabrics and style structures should be adapted to the cooling media. In the future, the configuration design of basic clothing fabric performance and clothing structure under different cooling media can be deeply explored, and accurate design parameters for the configuration of cooling media and basic garments under different environments and different human activity levels can be provided through numerical parameterization research. At the same time, the improvement of cooling efficiency of system has also become the development focus of the PCG functional design.

Key words: personal cooling garment, functional design, cooling medium, basic garment, cooling effect, thermal-wet comfort

中图分类号: 

  • TS941.16

表1

不同降温方式下个体降温服的设计要素"

降温方式 冷却介质的设计要素 基础服装的设计要素
蒸发 湿度 织物透气性;服装开口、款式
对流 流量、温度 织物透气性;服装款式、尺寸
传导 温度、质量 织物隔热性、透湿性及弹性性能;服装款式

表2

3种降温介质的特性对比"

介质 降温方式 优点 缺点
气体 蒸发
对流
降温效果良好、
湿舒适性好
过多气流影响人体行动
液体 对流
传导
降温效果最好 易造成过冷,湿舒适性较差,需电源和制冷器,限制人体行动
相变
材料
传导 降温效果良好、无需电子设备、携带方便 降温时长有限、湿舒适性较差

图1

不同空气流速下衣服微气候中的流体速度"

[1] LUCAS R A, EPSTEIN Y, KJELLSTROM T. Excessive occupational heat exposure:a significant ergonomic challenge and health risk for current and future workers[J]. Extreme Physiology & Medicine, 2014, 3(1):1-8.
[2] 李红彦, 孙成勋, 朱宝余, 等. 夏季高温环境户外作业服的热功能设计方法[J]. 西南师范大学学报(自然科学版), 2016, 41(6):146-151.
LI Hongyan, SUN Chengxun, ZHU Baoyu, et al. On design of thermal-function outdoor clothing used under high temperature in summer days[J]. Journal of Southwest China Normal University (Natural Science Edition), 2016, 41(6):146-151.
[3] YAZDI M M, SHEIKHZADEH M. Personal cooling garments:a review[J]. Journal of the Textile Institute, 2014, 105(12):1231-1250.
doi: 10.1080/00405000.2014.895088
[4] PRAJAPATI D G, KANDASUBRAMANIAN B. A review on polymeric-based phase change material for thermo-regulating fabric application[J]. Polymer Reviews, 2020, 60(3):389-419.
doi: 10.1080/15583724.2019.1677709
[5] MORRIS N B, JAY O, FLOURIS A D, et al. Sustainable solutions to mitigate occupational heat strain-an umbrella review of physiological effects and global health perspectives[J]. Environmental Health, 2020, 19(1):95.
doi: 10.1186/s12940-020-00641-7
[6] KANG Z X, UDAYRAJ, WAN X F, et al. A new hybrid personal cooling system (HPCS) incorporating insulation pads for thermal comfort management:experimental validation and parametric study[J]. Building and Environment, 2018, 145:276-289.
doi: 10.1016/j.buildenv.2018.09.033
[7] HOU J, YANG Z W, XU P, et al. Design and performance evaluation of novel personal cooling gar-ment[J]. Applied Thermal Engineering, 2019, 154:131-139.
doi: 10.1016/j.applthermaleng.2019.02.013
[8] 范一强, 贺建芸, 刘士成, 等. 制冷与制热空调服的研究进展[J]. 纺织学报, 2018, 39(7):174-180.
FAN Yiqiang, HE Jianyun, LIU Shicheng, et al. Review of cooling and heating garments[J]. Journal of Textile Research, 2018, 39(7):174-180.
[9] GOLBABAEI F, HEYDARI A, MORADI G, et al. The effect of cooling vests on physiological and perceptual responses:a systematic review[J]. International Journal of Occupational Safety and Ergonomics, 2020, 28(4):1-36.
doi: 10.1080/10803548.2019.1701238
[10] LAI D D, WEI F R, LU Y H, et al. Evaluation of a hybrid personal cooling system using a manikin operated in constant temperature mode and thermoregulatory model control mode in warm conditions[J]. Textile Research Journal, 2017, 87(1),46-56.
doi: 10.1177/0040517515622152
[11] WANG F M, CHOW C S W, ZHENG Q, et al. On the use of personal cooling suits to mitigate heat strain of mascot actors in a hot and humid environment[J]. Energy and Buildings, 2019. 10.1016/j.enbuild.2019.109561.
[12] XU P, KANG Z, WANG F M, et al. A numerical analysis of cooling performance of a hybrid personal cooling system (HPCS):effects of ambient temperature and relative humidity[J]. International Journal of Environmental Research and Public Health, 2020, 17(14):4995.
doi: 10.3390/ijerph17144995
[13] 柯莹, 张海棠. 降温服的研究现状及发展趋势[J]. 服装学报, 2020, 5(1):40-46.
KE Ying, ZHANG Haitang. Present state and development tendency of cooling suits[J]. Journal of Clothing Research, 2020, 5(1):40-46.
[14] 张渭源. 服装舒适性与功能[M].2版. 北京: 中国纺织出版社, 2011:50-53.
ZHANG Weiyuan. Clothing comfort and function[M]. 2nd ed. Beijing: China Textile & Apparel Press, 2011:50-53.
[15] CHOUDHARY B, UDAYRAJ, WANG F M, et al. Development and experimental validation of a 3D numerical model based on CFD of the human torso wearing air ventilation clothing[J]. International Journal of Heat and Mass Transfer. 2020. 10.1016/j.ijheatmasstransfer.2019.118973.
[16] 刘何清, 高黎颖, 游波, 等. 影响气体冷却服热舒适性因素的实验[J]. 西安科技大学学报, 2018, 38(6):910-918.
LIU Heqing, GAO Liying, YOU Bo, et al. Experimental study on factors affecting thermal comfortability of air cooling garment[J]. Journal of Xi'an University of Science and Technology, 2018, 38(6):910-918.
[17] DAVEY S L, BARWOOD M J, TIPTON M J. Thermal perceptions and skin temperatures during continuous and intermittent ventilation of the torso throughout and after exercise in the heat[J]. European Journal of Applied Physiology, 2013, 113(11):2723-2735.
doi: 10.1007/s00421-013-2697-5 pmid: 23974846
[18] 曾彦彰, 邓中山, 刘静. 基于微型风扇阵列系统的人体降温空调服[J]. 纺织学报, 2007, 28(6):100-105.
ZENG Yanzhang, DENG Zhongshan, LIU jing. Micro-fan-array system enabled air conditioning suit for cooling human body[J]. Journal of Textile Research, 2007, 28(6):100-105.
[19] ZHAO M M, WANG F M, GAO C S, et al. The effect of flow rate of a short sleeve air ventilation garment on torso thermal comfort in a moderate environment[J]. Fibers and Polymers, 2022, 23(2):546-553.
doi: 10.1007/s12221-021-0545-5
[20] 陈培东, 王飞, 蔡德华, 等. 液冷服数值模拟及舒适性实验研究[J]. 低温与超导, 2021, 49(3):91-98.
CHEN Peidong, WANG Fei, CAI Dehua, et al. Numerical simulation and comfort experiment of liquid cooling garment[J]. Cryogenics & Superconductivity, 2021, 49(3):91-98.
[21] GUO T H, SHANG B F, DUAN B, et al. Design and testing of a liquid cooled garment for hot environ-ments[J]. Journal of Thermal Biology, 2015, 49:47-54.
[22] SHU W C, FAN Y, ZHANG X F, et al. Thermal sensation modeling and experiments for liquid-cooled garments[J]. Ieee Transactions on Components Packaging and Manufacturing Technology, 2020, 10(3):418-423.
doi: 10.1109/TCPMT.5503870
[23] FONSECA A, MAYOR T S, CAMPOS J B. Guidelines for the specification of a PCM layer in firefighting protective clothing ensembles[J]. Applied Thermal Engineering, 2018, 133:81-96.
doi: 10.1016/j.applthermaleng.2018.01.028
[24] GAO C S, KUKLANE K, HOLMER I. Cooling vests with phase change material packs:the effects of temperature gradient, mass and covering area[J]. Ergonomics, 2010, 53(5):716-723.
doi: 10.1080/00140130903581649
[25] 牛丽, 钱晓明, 范金土, 等. 可降温式消防服的设计与降温效果评价[J]. 纺织学报, 2018, 39(6):106-112.
NIU Li, QIAN Xiaoming, FAN Jintu, et al. Design of cooling firefighting protective clothing and evaluation on cooling performance[J]. Journal of Textile Research, 2018, 39(6):106-112.
[26] 姬长发, 许多, 李美晨, 等. 相变蓄冷材料包间隙对冷却服热湿传递特性的影响[J]. 煤矿安全, 2020, 51(8):239-244.
JI Changfa, XU Duo, LI Meichen, et al. Influence of gap of phase change cold storage materials on heat and moisture transmission characteristics of cooling suit[J]. Safety in Coal Mines, 2020, 51(8):239-244.
[27] SU X, TIAN S C, LI H, et al. Thermal and humid environment improvement of the protective clothing for medical use with a portable cooling device:analysis of air supply parameters[J]. Energy & Buildings, 2021. 10.1016/j.enbuild.2021.110909.
[28] 李珩, 邱义芬, 姜南, 等. 通风温度对全身通风服热防护性能影响研究[J]. 航天医学与医学工程, 2014, 27(3):205-209.
LI Heng, QIU Yifen, JIANG Nan, et al. Effects of ventilation temperature on thermal protection performance of ventilation garment[J]. Space Medicine & Medical Engineering, 2014, 27(3):205-209.
[29] HAMDAN H, GHADDAR N, OUAHRANI D, et al. PCM cooling vest for improving thermal comfort in hot environment[J]. International Journal of Thermal Sciences, 2016, 102:154-167.
doi: 10.1016/j.ijthermalsci.2015.12.001
[30] ZHENG Q, KE Y, WANG H F. Design and evaluation of cooling workwear for miners in hot underground mines using PCMs with different temperatures[J]. International Journal of Occupational Safety and Ergonomics, 2020, 26(1):118-128.
[31] 盛伟, 郑海坤. 气冷式降温服传热分析[C]// 赵国君.中国制冷学会学术年会论文集. 武汉: 中国制冷学会, 2013:143-144.
SHENG Wei,ZHENG Haikun. Heat transfer model and analysis for air cooling garment[C]// ZHAO Guojun. Proceedings of the Conference of the Chinese Institute of Refrigeration. Wuhan: Chinese Institute of Refrigeration, 2013:143-144.
[32] 王诗潭, 王云仪. 服装通风设计手段的研究进展[J]. 纺织学报, 2017, 38(10):153-158.
WANG Shitan, WANG Yunyi. Research progress of design methods of ventilation mechanism of clothing[J]. Journal of Textile Research, 2017, 38(10):153-158.
[33] BACHNAK R, ITANI M, GHADDAR N, et al. Performance of hybrid PCM-Fan vest with deferred fan operation in transient heat flows from active human in hot dry environment[J]. Building and Environment, 2018, 144:334-348.
doi: 10.1016/j.buildenv.2018.08.054
[34] WANG F M, KE Y, UDAYRAJ, et al. Effect of cooling strategies on overall performance of a hybrid personal cooling system incorporated with phase change mater-ials (PCMs) and electric fans[J]. Journal of Thermal Biology, 2020, 92:1-8.
[35] WAN X, WANG F M, UDAYRAJ. Numerical analysis of cooling effect of hybrid cooling clothing incorporated with phase change material (PCM) packs and air ventilation fans[J]. International Journal of Heat and Mass Transfer, 2018, 126:636-648.
doi: 10.1016/j.ijheatmasstransfer.2018.05.155
[36] KANG Z, UDAYRAJ, WAN X, et al. A new hybrid personal cooling system (HPCS) incorporating insulation pads for thermal comfort management: experimental validation and parametric study[J]. Building and Environment, 2018, 145:276-289.
doi: 10.1016/j.buildenv.2018.09.033
[37] YANG J, WANG F M, SONG G W, et al. Effects of clothing size and air ventilation rate on cooling performance of air ventilation clothing in a warm condition[J]. International Journal of Occupational Safety and Ergonomics, 2020, 28(1):354-363.
doi: 10.1080/10803548.2020.1762316
[38] 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(8):88-94.
ZHANG Zhaohua, LI Luyao, AN Ruiping. Thermal-wet comfort evaluation of head and torso ventilation of pipe garment[J]. Journal of Textile Research, 2020, 41(8):88-94.
[39] CAO H T, BRANSON D H, PEKSOZ S, et al. Fabric selection for a liquid cooling garment[J]. Textile Research Journal, 2006, 76(8):587-595.
doi: 10.1177/0040517506067375
[40] BARTKOWIAK G, DABROWSKA A, MARSZALEK A. Assessment of an active liquid cooling garment intended for use in a hot environment[J]. Applied Ergonomics, 2017, 58:182-189.
doi: S0003-6870(16)30120-X pmid: 27633212
[41] ZHAO M M, GAO C S, WANG F M, et al. A study on local cooling of garments with ventilation fans and openings placed at different torso sites[J]. International Journal of Industrial Ergonomics, 2013, 43(3):232- 237.
doi: 10.1016/j.ergon.2013.01.001
[42] ZHAO M M, YANG J, WANG F M, et al. The cooling performance of forced air ventilation garments in a warm environment:the effect of clothing eyelet designs[J/OL]. The Journal of The Textile Institute, 2022[2022-02-15]. https://doi.org/10.1080/00405000.2022.2040107.
[43] KIM D E, LABAT K. Design process for developing a liquid cooling garment hood[J]. Ergonomics, 2010, 53(6):818-828.
doi: 10.1080/00140131003734229
[1] 丁雪婷, 王建萍, 潘婷, 姚晓凤, 袁鲁宁. 仿蜻蜓翅膀结构的冬季针织面料研发及其性能[J]. 纺织学报, 2023, 44(09): 75-83.
[2] 陈佳慧, 梅涛, 赵青华, 尤海宁, 王雯雯, 王栋. 热湿舒适性智能织物的研究进展[J]. 纺织学报, 2023, 44(01): 30-37.
[3] 牛梦雨, 潘姝雯, 戴宏钦, 吕凯敏. 医用防护服的热湿舒适性与人体疲劳度的关系[J]. 纺织学报, 2021, 42(07): 144-150.
[4] 江燕婷, 严庆帅, 辛斌杰, 高琮, 施楣梧. 纺织品单向导水性能测试方法分析[J]. 纺织学报, 2021, 42(05): 51-58.
[5] 王莉, 张冰洁, 王建萍, 刘莉, 杨雅岚, 姚晓凤, 李倩文, 卢悠. 基于仿生学的冬季针织运动面料开发与性能评价[J]. 纺织学报, 2021, 42(05): 66-72.
[6] 杨阳, 俞欣, 章为敬, 张佩华. 针织面料凉爽性能的评价方法及其预测模型[J]. 纺织学报, 2021, 42(03): 95-101.
[7] 孙岑文捷, 倪军, 张昭华, 董婉婷. 针织运动服的通风设计与热湿舒适性评价[J]. 纺织学报, 2020, 41(11): 122-127.
[8] 张昭华, 李璐瑶, 安瑞平. 管道式通风服头部与躯干部位的热湿舒适性评价[J]. 纺织学报, 2020, 41(08): 88-94.
[9] 雷敏, 李毓陵, 马颜雪, 程隆棣, 周峰. 织物散湿性能的研究进展[J]. 纺织学报, 2020, 41(07): 174-181.
[10] 刘林玉, 陈诚毅, 王珍玉, 祝焕, 金艳苹. 消防服多层织物的热湿舒适性[J]. 纺织学报, 2019, 40(05): 119-123.
[11] 杜菲菲, 李小辉, 张思严. 防火服用蜂窝夹芯结构织物的热防护性能测评[J]. 纺织学报, 2019, 40(03): 133-138.
[12] 翟胜男 陈太球 蒋春燕 傅佳佳 王鸿博. 消防服外层织物热防护性与舒适性综合评价[J]. 纺织学报, 2018, 39(08): 100-104.
[13] 王诗潭 王云仪. 服装通风设计手段的研究进展[J]. 纺织学报, 2017, 38(10): 153-159.
[14] 李利君 宋国文 李睿 王丽文 向春晖. 消防员防护服面料的热湿舒适性[J]. 纺织学报, 2017, 38(03): 122-125.
[15] 马崇启 蔡薇琦 阚永葭. 酚醛纤维织物热湿舒适性的灰色聚类分析[J]. 纺织学报, 2016, 37(12): 29-32.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!