纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 91-98.doi: 10.13475/j.fzxb.20220309501
孙明涛1, 陈成玉1, 闫伟霞1,2, 曹珊珊1, 韩克清1()
SUN Mingtao1, CHEN Chengyu1, YAN Weixia1,2, CAO Shanshan1, HAN Keqing1()
摘要:
为使生物质可降解复合材料在汽车内饰领域替代传统石油基材料,以黄麻纤维(JF)、聚乳酸(PLA)短纤为原料,通过纤网模压成型法制备了黄麻纤维/聚乳酸短纤(JF/PLA)复合板,着重探讨了针刺过程中不同针刺频率对复合板结构及性能的影响。结果表明,当针刺频率为300 次/min时,复合板的力学性能达到最大,其纵向拉伸强度、弯曲强度及缺口冲击强度分别为14.54 MPa、33.02 MPa、9.54 kJ/m2。进一步增加针刺频率,纤网中部分黄麻纤维会发生断裂,造成复合板力学性能出现下降。另外,针刺频率的提高使得复合板吸水率与生物降解速率下降,同时复合板的阻燃效果得到改善,有利于JF/PLA复合板在汽车内饰领域的推广应用。
中图分类号:
[1] |
KOUSHIK G, BRAD H J. Roadmap to biodegradable plastics-current state and research needs[J]. ACS Sustainable Chemistry and Engineering, 2021, 9(18): 6170-6187.
doi: 10.1021/acssuschemeng.1c00801 |
[2] | 颜景丹, 王国未, 马鸿昌, 等. 麻纤维/聚乳酸复合板材自然老化试验及在汽车应用评价[J]. 汽车工艺与材料, 2022, 12: 59-63. |
YAN Jingdan, WANG Guowei, MA Hongchang, et al. Natural aging performance and automotive application evaluation for hemp fiber/polylactic acid composite panels[J]. Automobile Technology & Material, 2022, 12: 59-63. | |
[3] |
WU Y, XIA C, CAI L, et al. Development of natural fiber-reinforced composite with comparable mechanical properties and reduced energy consumption and environmental impacts for replacing automotive glass-fiber sheet molding compound[J]. Journal of Cleaner Production, 2018, 184, 92-100.
doi: 10.1016/j.jclepro.2018.02.257 |
[4] |
HITESH J, PIYUSH J. A review on mechanical behavior of natural fiber reinforced polymer composites and its applications[J]. Journal of Reinforced Plastics and Composites, 2019, 38(10): 441-453.
doi: 10.1177/0731684419828524 |
[5] | NURAZZI N M, ASYRAF M R M, RAYUNG M, et al. Thermogravimetric analysis properties of cellulosic natural fiber polymer composites: a review on influence of chemical treatments[J]. Polymer, 2021. DOI: 10.3390/polym13162710. |
[6] | 汪泽幸, 吴波, 李帅, 等. 循环应力松弛下黄麻织物/聚乙烯复合材料能量耗散演化规律[J]. 纺织学报, 2020, 41(10): 74-80. |
WANG Zexing, WU Bo, LI Shuai, et al. Energy dissipation evolution of jute fabric/polyethylene composite under cyclic stress relaxation[J]. Journal of Textile Research, 2020, 41(10): 74-80. | |
[7] | MD S, MD A A F, KADIR B, et al. Plant-based natural fibre reinforced composites: a review on fabrication, properties and applications[J]. Coatings, 2020. DOI: 10.3390/coatings10100973. |
[8] | 何莉萍, 刘龙镇, 苏胜培, 等. 纤维含量对黄麻纤维增强树脂基复合材料力学与热性能的影响[J]. 复合材料学报, 2023, 40(4): 2038-2048. |
HE Liping, LIU Longzhen, SU Shengpei, et al. Effects of fiber addition on the mechanical and thermal properties of jute fiber reinforced resin composites[J]. Acta Materiae Compositae Sinica, 2023, 40(4): 2038-2048. | |
[9] |
TAO Y, NING J, YAN L. Study on short ramie fiber/poly(lactic acid) composites compatibilized by maleic anhydride[J]. Composites Part A:Applied Science and Manufacturing, 2014, 64: 139-146.
doi: 10.1016/j.compositesa.2014.05.008 |
[10] | 郭耀伟, 蔡明. 天然纤维增强复合材料的应用及发展前景[J]. 纺织导报, 2021(5): 86-90. |
GUO Yaowei, CAI Ming. Application and development prospect of natural fiber reinforced plastics[J]. China Textile Leader, 2021(5): 86-90. | |
[11] | 焦学健, 李丽君, 董抒华, 等. 汽车内饰用PP/黄麻纤维复合材料力学性能[J]. 工程塑料应用, 2017, 45(7): 13-16. |
JIAO Xuejian, LI Lijun, DONG Shuhua, et al. Research progress of PP/hemp fiber composites[J]. Engineering Plastics Application, 2017, 45(7): 13-16. | |
[12] | 周勇, 孙筱辰, 张兴卫, 等. 非织造黄麻纤维复合材料的制备与吸声性能研究[J]. 功能材料, 2016, 11(47): 131-135. |
ZHOU Yong, SUN Xiaochen, ZHANG Xingwei, et al. Study on manufacturing technology and acoustic property of nonwoven jute fibers composites[J]. Journal of Functional Material, 2016, 11(47): 131-135. | |
[13] |
CHEN C, TIAN Y, LI F, et al. Toughening polylactic acid by a biobased poly(butylene 2,5-furan-dicarboxylate)-b-poly(ethylene glycol) copolymer: balanced mechanical properties and potential biodegradability[J]. Biomacromolecules, 2021, 22(2): 374-385.
doi: 10.1021/acs.biomac.0c01236 |
[14] | SUN M, HUANG S, YU M, et al. Toughening modification of polylactic acid by thermoplastic silicone polyurethane elastomer[J]. Polymers, 2021. DOI: 10.3390/polym13121953. |
[15] | HE L, SONG F, GUO Z, et al. Toward strong and super-toughened PLA via incorporating a novel fully bio-based copolyester containing cyclic sugar[J]. Composites Part B-Engineering, 2021. DOI: 10.1016/j.compositesb.2020.108558. |
[16] |
ZHANG H, MING R, YANG G, et al. Influence of alkali treatment on flax fiber for use as reinforcements in polylactide stereocomplex composites[J]. Polymer Engineering and Science, 2015, 55(11): 2553-2558.
doi: 10.1002/pen.24147 |
[17] | 程平, 彭勇, 汪馗, 等. 3D打印连续苎麻纤维增强聚乳酸复合材料的准静态侵彻性能[J]. 材料导报, 2023, 37(1): 237-242. |
CHENG Ping, PENG Yong, WANG Kui, et al. Quasi static penetration property of 3D printed continuous ramie-fiber reinforced polylactic acid composites[J]. Materials Reports, 2023, 37(1): 237-242. | |
[18] | CHUNG T, PARK J, LEE H, et al. The improvement of mechanical properties, thermal stability, and water absorption resistance of an eco-friendly PLA/kenaf biocomposite using acetylation[J]. Applied Sciences, 2018. DOI: 10.3390/app8030376. |
[19] | 何宏, 李华冠, 陈书云. 汽车内饰用麻纤维增强PET/PP非织造复合材料的制备与性能研究[J]. 玻璃纤维, 2017(5): 22-26. |
HE Hong, LI Huaguan, CHEN Shuyun. Preparation and properties of jute fiber reinforced PET/PP nonwoven composite material used for car interior[J]. Fiber Glass, 2017(5): 22-26. | |
[20] |
刘俊威, 童亮, 王晨, 等. 汽车内饰非金属材料阻燃改性研究进展[J]. 中国塑料, 2020, 34(4): 102-108.
doi: 10.19491/j.issn.1001-9278.2020.04.017 |
LIU Junwei, TONG Liang, WANG Chen, et al. Research progress in flame-retardant modification of non-metallic interior materials[J]. China Plastics, 2020, 34(4): 102-108.
doi: 10.19491/j.issn.1001-9278.2020.04.017 |
[1] | 杨其亮, 杨海伟, 王邓峰, 李长龙, 张乐乐, 王宗乾. 超疏水弹性丝素蛋白纤维气凝胶的制备及其吸油性能[J]. 纺织学报, 2023, 44(09): 1-10. |
[2] | 张颖, 宋明根, 姬洪, 陈康, 张先明. 热定形工艺对高强型聚酯工业丝结构性能的影响[J]. 纺织学报, 2023, 44(09): 43-51. |
[3] | 施静雅, 王慧佳, 易雨青, 李妮. 聚氨酯/聚乙烯醇缩丁醛复合纳米纤维膜的制备及其过滤性能[J]. 纺织学报, 2023, 44(08): 26-33. |
[4] | 赵明顺, 陈枭雄, 于金超, 潘志娟. 光致变色聚乳酸纤维的纺制及其微观结构与性能[J]. 纺织学报, 2023, 44(07): 10-17. |
[5] | 段成红, 吴港本, 罗翔鹏. 基于DIGIMAT的碳纤维增强环氧树脂编织复合材料的力学性能[J]. 纺织学报, 2023, 44(07): 126-131. |
[6] | 蒋之铭, 张超, 张晨曦, 朱平. 磷酸酯化聚乙烯亚胺阻燃粘胶织物的制备与性能[J]. 纺织学报, 2023, 44(06): 161-167. |
[7] | 宋洁, 蔡涛, 郑福尔, 郑环达, 郑来久. 涤纶针织鞋材超临界CO2无水染色性能[J]. 纺织学报, 2023, 44(05): 46-53. |
[8] | 罗海林, 苏健, 金万慧, 傅雅琴. 新型缫丝成筒技术的工艺优化[J]. 纺织学报, 2023, 44(04): 46-54. |
[9] | 黄伟, 张嘉煜, 张东, 程春祖, 李婷, 吴伟. Lyocell纤维性能表征及其对比分析[J]. 纺织学报, 2023, 44(03): 42-48. |
[10] | 姜博宸, 王玥, 王富军, 林婧, 郭爱军, 王璐, 关国平. 一体化机械编织食管覆膜支架的力学性能与编织参数关系[J]. 纺织学报, 2023, 44(03): 88-95. |
[11] | 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43. |
[12] | 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21. |
[13] | 张书诚, 邢剑, 徐珍珍. 基于废弃聚苯硫醚滤料的多层吸声材料制备及其性能[J]. 纺织学报, 2022, 43(12): 35-41. |
[14] | 张志颖, 王亦秋, 眭建华. 超高分子量聚乙烯纤维增强中空蜂窝模压复合材料性能研究[J]. 纺织学报, 2022, 43(11): 81-87. |
[15] | 陈康, 陈高峰, 王群, 王刚, 张玉梅, 王华平. 后加工中热处理张力变化对高模低收缩涤纶工业丝结构与性能影响[J]. 纺织学报, 2022, 43(10): 10-15. |
|