纺织学报 ›› 2023, Vol. 44 ›› Issue (04): 55-62.doi: 10.13475/j.fzxb.20220403708

• 纺织工程 • 上一篇    下一篇

基于分形的棉条建模及其牵伸过程的仿真

谢鹏浩1, 李勇2, 陈晓川1(), 汪军3   

  1. 1.东华大学 机械工程学院, 上海 201620
    2.塔里木大学 机械电气化工程学院, 新疆 阿拉尔 843300
    3.东华大学 纺织学院, 上海 201620
  • 收稿日期:2022-04-11 修回日期:2022-11-16 出版日期:2023-04-15 发布日期:2023-05-12
  • 通讯作者: 陈晓川(1970—),男,教授,博士。主要研究方向为棉花加工的建模仿真等。E-mail:xcchen@dhu.edu.cn
  • 作者简介:谢鹏浩(1998—),男,硕士生。主要研究方向为静力学与动力学建模与仿真。

Fractal-based modeling of whiskers and simulation of drafting process

XIE Penghao1, LI Yong2, CHEN Xiaochuan1(), WANG Jun3   

  1. 1. College of Mechanical Engineering, Donghua University, Shanghai 201620, China
    2. College of Mechanical and Electronic Engineering, Tarim University,Alar, Xinjiang 843300, China
    3. College of Textiles, Donghua University, Shanghai 201620, China
  • Received:2022-04-11 Revised:2022-11-16 Published:2023-04-15 Online:2023-05-12

摘要:

为分析计算棉条牵伸力的变化,以提高棉纤维牵伸的质量,依据分形理论的建模思想,将具有相同圆形截面的棉纤维按照分形理论进行排列,构建了新的棉须条模型。基于动态牵伸和静态牵伸的相似性,将该模型进行静态拉伸仿真,得出不同定量的棉条静态牵伸力。结果显示须条静态拉伸力与动态牵伸力的平均误差为5.66%,最大相对误差在12%以内。利用线性拟合求出动态牵伸力与静态牵伸力的关系式,成功预测了不同定量下的牵伸力。此外,得出了在定量为25.60 g/m时,静态牵伸力随牵伸倍数的变化曲线。结果表明仿真牵伸力与动态牵伸力的变化趋势基本一致。建立的分形须条模型有效,也为动态牵伸力的近似预测提供参考。

关键词: 棉须条, 分形结构, 动态牵伸力, 静态牵伸力, 牵伸质量

Abstract:

Objective In order to analyze and calculate the changes in the drawing force of cotton whiskers and improve the quality of the cotton drawing process, this paper analyzes and researches the drawing force. Using the finite element analysis to calculate the drawing force can greatly simplify the calculation process of the drawing force and improve the efficiency of the drawing process. The drawing force is the most important process parameter in the drawing process of cotton whiskers, and it has an important influence on the final yarn quality of the spinning process.
Method Fractology is an effective method used to describe the structure of irregular objects. Fractal theory is used to construct the complex form of whisker fibers, which can better reflect the structural characteristics of the whisker. Using the relationship between static stretching and dynamic drawing, static stretching is used instead of dynamic drawing to simulate and solve the drawing force. The simulated drawing force is fitted with the experimental data to obtain the fitting equation, which can be used to solve the drawing force.
Results The fractal whisker bar model constructed by the fractal method can better simulate the complex pore structure of cotton whiskers. The fractal graph generation algorithm used in this paper is the iterative function system algorithm (IFS). At the same time, the model uses a fiber bundle to represent the existence of several fibers, and the fiber bundle has a circular cross-sectional structure. ANSYS is used to perform finite element analysis and calculation of the fractal whisker bar model, and the simulation-calculated drawing force is obtained based on the post-processing results. (Tab. 4). The comparison results of the simulated drawing force and the experimental drawing force show that the average error between the static drawing force and the dynamic drawing force of the whisker strip is 5.66%, the maximum relative error is within 12%, and the relative error is within a reasonable range. These prove that the simulated drawing force can better reflect the drawing force in the drawing process to a certain extent. Using curve fitting, the relationship between the experimental drawing force and the simulated drawing force is obtained, and the size of the drawing force of the whiskers under different quantifications is successfully predicted. Under the quantitative 25.60 g/m whisker model, the simulated drawing force of the model under different drawing multiples is analyzed, and it is found that the simulated drawing force reached the critical maximum value when the drawing multiple was about 1.5, and then the drawing force decreased rapidly with the increase of the drawing multiple. The curve of the simulated drawing force with the multiple of drawing is also basically the same as the experimental curve. Finally, the comparison between the simulation results of the drawing force and the experimental data shows that the fractal whisker bar model can effectively solve the drawing force, and the model is reasonable.
Conclusion In this paper, the fractal method is used to construct a cotton whisker strip model, which provides a new idea for the three-dimensional modeling of the whisker strip. The fractal model can reflect the nonlinear structure of the whisker strip. The use of finite element simulation to solve the drawing force of the whisker strip can greatly improve the efficiency of solving the drawing force and save manpower and material resources. The simulation results of the drawing force of the whisker strip show the effectiveness of the fractal whisker strip model. The relationship between the simulated drawing force and the experimental drawing force can be used to predict the size of the drawing force and to pre-calculate the drawing force, which provides a reference for the setting of the drawing force in spinning. The curve of the simulated drawing force on the drawing multiple also proves the rationality of the fractal whisker model.

Key words: whiskers, fractal structure, dynamic drafting force, static drafting force, arawing quality

中图分类号: 

  • TS101

图1

初始图形与变换过程(俯视图)"

图2

初始图形与变换过程(正视图)"

表1

俯视图分形须条单元的IFS变换"

Ti ωi
T1 x'=x-2.4 y'=y
T2 x'=x+2.4 y'=y
T3 x'=x y'=y+2.68

表2

俯视图分形须条单元的IFS码"

i a i b i c i d i e i f i
(1) 1 0 2.4 0 1 0
(2) 1 0 2.4 0 1 0
(3) 1 0 0 0 1 2.68

图3

分形须条集合体模型基本单元"

图4

第1次镜像结构"

图5

第2次镜像结构"

图6

第2次镜像结构中切除部分示意图"

图7

不同定量的分形须条三维模型"

表3

须条定量误差"

实验须条定量/(g·m-1) 须条模型平均定量/(g·m-1) 相对误差/%
8.96 6.40 28.57
13.44 12.80 4.76
17.92 19.20 7.14
26.88 25.60 4.76
31.36 32.00 2.04
35.84 38.40 7.14

图8

不同定量拉伸的应力云图"

表4

模型定量拉伸力与实验牵伸力"

须条定量/
(g·m-1)
实验牵
伸力/
cN
模型平
均定量/
(g·m-1)
仿真牵
伸力/
cN
相对误差/%
定量 牵伸力
8.96 56.210 6.40 52.146 28.57 7.23
13.44 71.369 12.80 79.690 -4.76 11.66
17.92 100.017 19.20 106.198 7.14 6.18
26.88 136.903 25.60 141.585 -4.76 3.42
31.36 156.236 32.00 157.627 2.04 0.89
35.84 175.269 38.40 183.279 7.14 4.57

图9

模型的牵伸力和实验牵伸力折线"

表5

牵伸力计算与实验值对比"

须条定量/
(g·m-1)
动态牵伸力的
仿真/cN
动态牵伸力的
计算值/cN
动态牵伸力的
实验值/cN
相对误
差/%
40.32 205.438 207.855 196.930 5.26
50.12 243.157 238.443 240.590 -0.90

图10

不同牵伸倍数的仿真牵伸力"

[1] 张之亮. 并条牵伸中牵伸力与纤维运动的研究[D]. 上海: 东华大学, 2011:42.
ZHANG Zhiliang. Research on drafting force and fiber motion in drawing frame drafting[D]. Shanghai: Donghua University, 2011:42.
[2] PLONSKER H R, BACKER S. The dynamics of roller drafting: part I: drafting force measurement[J]. Textile Research Journal, 1967, 37(8): 673-687.
doi: 10.1177/004051756703700807
[3] REN Jiazhi, FENG Qingguo, JIA Guoxin, et al. The on-line detection of drafting force of back zone on cotton spinning frame[J]. Advance Material Research, 2001, 332(334):520-525.
[4] HUH Y, KIM J S. Modeling the dynamic behavior of the fiber bundle in a roll-drafting process[J]. Textile Research Journal, 2004, 74(10): 872-878.
doi: 10.1177/004051750407401006
[5] KIM J S, LIM J H, HUH Y. Analyzing roller drafting dynamics with stochastic perturbations: simulation approach[J]. Textile Research Journal, 2012, 82(17): 1806-1818.
doi: 10.1177/0040517512441991
[6] KOMORI T, ITOH M. A new approach to the dynamics of roller draft: part 1: the basic scheme and an application to a model system[J]. Sen-I Gakkaishi, 2004, 60(7): 220-229.
doi: 10.2115/fiber.60.220
[7] CHERKASSKY A. Discrete-event simulation model of roll-drafting process[J]. Journal of the Textile Institute, 2011, 102(12): 1044-1058.
doi: 10.1080/00405000.2010.531950
[8] WANG Tao, CHEN Xiaochuan, WANG Jun, et al. Modeling and drafting process simulation of cotton slivers based on an octahedron structure[J]. Textile Research Journal, 2022, 92(7/8):1288-1299.
doi: 10.1177/00405175211056383
[9] 高绪珊, 童俨, 庄毅, 等. 天然纤维的分形结构和分形结构纤维的开发[J]. 合成纤维工业, 2000(4):35-38.
GAO Xushan, TONG Yan, ZHUANG Yi, et al. Fractal structure of natural fibers and development of fractal structure fibers[J]. China Synthetic Fiber Industry, 2000(4):35-38.
[10] HU Wen, LI Yong, CHEN Xiaochuan, et al. Construction and finite element simulation of cotton model for sawtooth cotton gin with cotton seed based on fractal theory[J]. Textile Research Journal, 2020, 90(23/24): 27-32.
[11] 陶雪娇, 陶薇薇. 基于IFS码的分形图形生成算法研究[J]. 软件导刊, 2017, 16(8):53-55.
TAO Xuejiao, TAO Weiwei. Research on fractal graphics generation algorithm based on IFS code[J]. Software Guide, 2017, 16(8):53-55.
[12] 苏淑兰, 饶秋华, 贺跃辉. 新型Ti-Al金属间化合物多孔材料的弹性模量表征[J]. 粉末冶金材料科学与工程, 2012, 17(6):804-809.
SU Shulan, RAO Qiuhua, HE Yuehui. Characterization of elastic modulus of novel Ti-Al intermetallic compound porous materials[J]. Powder Metallurgy Materials Science and Engineering, 2012, 17(6):804-809.
[1] 刘东炎, 郑成燕, 王晓旭, 钱坤, 张典堂. 超高分子量聚乙烯织物/聚脲柔性复合材料的抗破片侵彻机制[J]. 纺织学报, 2023, 44(03): 79-87.
[2] 姜博宸, 王玥, 王富军, 林婧, 郭爱军, 王璐, 关国平. 一体化机械编织食管覆膜支架的力学性能与编织参数关系[J]. 纺织学报, 2023, 44(03): 88-95.
[3] 柳浩, 马万彬, 栾一鸣, 周岚, 邵建中, 刘国金. 光子晶体结构生色碳纤维/涤纶混纺纱线的制备及其性能[J]. 纺织学报, 2023, 44(02): 159-167.
[4] 冯帅博, 强荣, 邵玉龙, 杨啸, 马茜, 陈博文, 陈熠, 高明洋, 陈彩虹. 丝瓜络衍生碳纤维基复合材料的电磁波吸收性能[J]. 纺织学报, 2023, 44(02): 69-75.
[5] 马传旭, 张宁, 潘如如. 基于支持向量机的筒子纱纱管品种检测[J]. 纺织学报, 2023, 44(01): 194-200.
[6] 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227.
[7] 夏勇, 赵迎, 徐利云, 徐思峻, 姚理荣, 高强. 抗菌防沾污生物防护材料的制备及其性能[J]. 纺织学报, 2023, 44(01): 64-70.
[8] 赵智伟, 王子希, 杨世玉, 胡毅. 基于锦纶滤膜喷墨印花制备镓-铟合金液态金属电路[J]. 纺织学报, 2022, 43(12): 102-108.
[9] 宋洁心, 付天宇, 李凤鸣, 宋锐, 李贻斌. 基于延展性的机器人面料缝制张力预测方法[J]. 纺织学报, 2022, 43(12): 173-180.
[10] 王铭亮, 张慧乐, 岳晓丽, 陈慧敏. 基于数字图像相关法的纱线和织物微观变形测量[J]. 纺织学报, 2022, 43(11): 52-58.
[11] 张威, 蒋喆, 徐琪, 孙宝忠. 形状记忆复合编织圆管的制备及其热致回复性能[J]. 纺织学报, 2022, 43(11): 68-74.
[12] 俞杨销, 李枫, 王煜煜, 王善龙, 王建南, 许建梅. 聚吡咯/丝素导电纳米纤维膜的制备及其性能[J]. 纺织学报, 2022, 43(10): 16-23.
[13] 杨辉宇, 周敬伊, 段子健, 徐卫林, 邓波, 刘欣. 原子层沉积在纺织品表面多功能改性研究进展[J]. 纺织学报, 2022, 43(09): 195-202.
[14] 吴帆, 李勇, 陈晓川, 汪军, 徐敏俊. 基于三维编织模型的棉纤维集合体压缩过程有限元建模与仿真[J]. 纺织学报, 2022, 43(09): 89-94.
[15] 邹专勇, 缪璐璐, 董正梅, 郑国全, 付娜. 喷气涡流纺工艺对粘胶/涤纶包芯纱性能的影响[J]. 纺织学报, 2022, 43(08): 27-33.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!