纺织学报 ›› 2023, Vol. 44 ›› Issue (09): 35-42.doi: 10.13475/j.fzxb.20220404301

• 纤维材料 • 上一篇    下一篇

聚(3-羟基丁酸-3-羟基戊酸酯)改性涤纶长丝的降解性能

聂文琪1,2,3, 许帅1, 高俊帅1, 方斌2(), 孙江东1   

  1. 1.安徽工程大学 纺织服装学院, 安徽 芜湖 241000
    2.南京禾素时代抗菌材料科技有限公司, 江苏 南京 210000
    3.安徽工程大学 安徽省纺织工程技术研究中心, 安徽 芜湖 241000
  • 收稿日期:2022-04-12 修回日期:2022-10-11 出版日期:2023-09-15 发布日期:2023-10-30
  • 通讯作者: 方斌(1983—),男,高级工程师。主要研究方向为可降解抗菌纤维材料开发。E-mail:108068336@qq.com
  • 作者简介:聂文琪(1990—),男,讲师,博士。主要研究方向为纤维超级电容器及柔性储能材料。
  • 基金资助:
    安徽省自然科学基金项目(2008085QE213);安徽省纺织工程技术研究中心;安徽省高等学校纺织面料重点实验室联合开放基金项目(2021AETKL06)

Degradation properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate) modified polyester composite filament

NIE Wenqi1,2,3, XU Shuai1, GAO Junshuai1, FANG Bing2(), SUN Jiangdong1   

  1. 1. College of Textile and Garment, Anhui Polytechnic University, Wuhu, Anhui 241000, China
    2. Nanjing Bioserica Era Antibacterial Material Technology Co., Ltd., Nanjing, Jiangsu 210000, China
    3. Anhui Engineering and Technology Research Center of Textile, Anhui Polytechnic University, Wuhu, Anhui 241000, China
  • Received:2022-04-12 Revised:2022-10-11 Published:2023-09-15 Online:2023-10-30

摘要:

针对涤纶 (PET) 长丝难降解的问题,以聚(3-羟基丁酸-3-羟基戊酸酯)(PHBV)为改性剂,以PET为基体材料,采用熔融共混纺丝法规模化制备PHBV/PET复合长丝,并利用热降解和土壤降解2种方式探究PHBV改性PET长丝的降解性能。借助扫描电子显微镜、同步热分析仪、红外光谱仪及纤维强力仪等对降解前后复合长丝进行表征,评价其结构、力学及降解性能,并对降解过程中复合长丝分子链的变化进行分析。结果表明:添加质量分数为1%PHBV制备的PHBV/PET复合长丝具有较好的力学特性,其断裂强度为1.69 cN/dtex;此外,PHBV/PET复合长丝在热降解及土壤包埋下均可实现降解,且随着PHBV质量分数的增加,复合长丝的侧基、支链更容易移动,降解效果好。该PHBV/PET复合长丝可作为新型环保材料替代部分PET长丝在相关应用领域中应用,对环境保护起到一定的改善作用。

关键词: 聚(3-羟基丁酸-3-羟基戊酸酯), 涤纶长丝, 新型环保材料, 生物可降解, 结晶性能

Abstract:

Objective Polyester (PET) filament has made remarkable contributions to the development of textiles and is widely applied in various fields because of its high strength, superior durability, and good dimensional stability. At present, the annual production of polyester filament is as high as 43.26 million tons/year, however it is more difficult to degrade under natural conditions, causing environmental concerns. Therefore, it is a critical challenge to improve the degradation properties of PET filament without changing its other performance.

Method A novel composite filament was rationally fabricated via poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV) modified PET, called PHBV/PET filament. The degradation performance of PHBV/PET filament was investigated by thermal degradation and soil degradation. The influences of temperature and soil filling time on the molecular structure of filaments were studied in depth. Scanning electron microscope, thermogravimetric analyzer (TG), differential scanning calorimeter, and Fourier transform infrared spectroscopy were adopeed to analyze the mechanical properties, crystallinity, structure and surface morphology of the PHBV/PET filaments after degradation.

Results The addition of PHBV slightly was found to reduce the strength of the PET fibers with a breaking strength of 1.69 cN/dtex for 1% PHBV/PET filament. However, the elongation of break was increased significantly, indicating that the introduction of PHBV would not limit the processing applications of the composite yarn (Fig.1). Apart from its fine mechanical properties, PHBV/PET also exhibited better thermal degradation performance. The 5% mass loss temperature of the 1% PHBV/PET filament was 364 ℃, lower than 386 ℃ for PET filament. The PHBV cansed the crystallization of the filament more difficult during pyrolysis process, and the filament seemed to be more likely to degrade at low temperatures (Fig. 2). The mass loss of the PHBV/PET filament was only 88.42%, while the mass loss of the non-thermally degraded filament was as high as 94.90% in TG curves (Fig. 4), indicating the PHBV/PET filament macromolecular chains easier to break at high temperatures degradation condition. It was also found that 3% PHBV/PET filament after thermal degradation occurred an apparent absorption peak at 110 ℃ (Fig. 5), implying the high temperatures would promote recrystallization of composite filament and that PHBV can promote the degradation of PET filament. Furthermore, 1% PHBV/PET filament lacked an exothermic peak at 2 959.25 cm-1 after thermal degradation, confirming that 1% PHBV/PET filaments can be degraded (Fig. 6). After 60 d buried in soil environment, grooves distinctly appeared in the surface of the 1% PHBV/PET filament (Fig. 7), suggesting that the 1% PHBV/PET filament was eroded by soil microorganisms, leading a change to the internal structure of the fiber, which caused the breakage and decomposition of the macromolecular chains. The results showed a significant increase in the absorption enthalpy of 1% PHBV/PET filaments (Fig. 8).

Conclusion 1% PHBV/PET filament was found to have excellent mechanical properties and can be degraded both thermal and soil embedding. When increasing PHBV content, the side groups and branched chains of PET filaments are more easily moved, and the degradation is much more easily. Therefore, the PHBV/PET filament can be used as a new environment-friendly material to replace part of PET filament in related application fields, contributing to green production of textiles.

Key words: poly(3-hydroxybutyrate-co-3-hydroxyvalerate), polyester filament, environment friendly material, biodegradable, crystallization property

中图分类号: 

  • TS15

图1

PHBV/PET复合长丝的力学性能"

图2

PHBV/PET复合长丝的TG及DSC曲线"

表1

不同质量分数PHBV/PET 复合长丝的DSC数据"

样品名称 Tg/℃ Tm/℃ ΔHm/(J·g-1)
PET 46.76 250.45 25.673 6
1%PHBV/PET 46.74 254.46 31.219 4
3%PHBV/PET 46.13 253.95 39.105 5

图3

不同质量分数PHBV/PET复合长丝的红外光谱"

图4

热降解前后PHBV/PET复合长丝的TG曲线"

图5

热降解前后PHBV/PET复合长丝的DSC曲线"

表2

热降解前后PHBV/PET复合长丝的DSC数据"

样品名称 Tg/℃ Tm/℃ ΔHm/(J·g-1)
1%PHBV/PET 46.74 254.46 31.219 4
1%PHBV/PET
(降解后)
46.78 254.26 16.168 1
3%PHBV/PET 46.13 253.95 39.105 5
3%PHBV/PET
(降解后)
46.53 251.04 35.339 9

图6

热降解前后PHBV/PET复合长丝的红外光谱"

图7

土壤降解前后PET长丝和1%PHBV/PET复合长丝的微观形貌"

图8

不同时间下土壤降解1%PHBV/PET复合长丝的DSC曲线"

[1] 李新国, 包立强, 刘晶, 等. 塑料污染治理工作中存在的问题及建议[J]. 环境保护与循环经济, 2021, 41(10): 108-110.
LI Xinguo, BAO Liqiang, LIU Jing, et al. Problems and suggestions in the management of plastic pollu-tion[J]. Environmental Protection and Circular Economy, 2021, 41(10): 108-110.
[2] 韦丽娟, 李宁杰. 限塑令与塑料替代品的发展现状[J]. 广东化工, 2021, 48(17): 110-111.
WEI Lijuan, LI Ningjie. Development status of plastic restriction order and plastic substitutes[J]. Guangdong Chemical Industry, 2021, 48(17): 110-111.
[3] PAUL N, ANDREA H, 宋清泉. PET/聚酯回收:再用于长丝的要求和回收方案[J]. 国际纺织导报, 2020, 48(8): 6-8.
PAUL N, ANDREA H, SONG Qingquan. PET/polyester recycling:requirements and recycling solutions for reuse in filaments[J]. Melliand China, 2020, 48(8): 6-8.
[4] 肖红, 施楣梧, 刘晶. 不同温度下PET/PTT长丝的结构和性能[J]. 纺织学报, 2008, 19(8): 6-10.
XIAO Hong, SHI Meiwu, LIU Jing. Structures and properties of PET/PTT filament at different temper-atures[J]. Journal of Textile Research, 2008, 19(8): 6-10.
[5] 邹鹏鹏, 刘宇琴, 陈亚楠, 等. 茯苓-聚乙烯醇抑菌膜的制备及生物可降解动力学评价[J]. 包装工程, 2022, 43(11): 31-37.
ZOU Pengpeng, LIU Yuqin, CHEN Yanan, et al. Preparation and biodegradability evaluation of Poria cocos-poly(vinyl alcohol) antibacterial film[J]. Packaging Engineering, 2022, 43(11): 31-37.
[6] 陈咏, 乌婧, 王朝生, 等. 生物可降解聚己二酸-对苯二甲酸丁二醇酯纤维的制备及其环境降解性能[J]. 纺织学报, 2022, 43(2): 37-43.
CHEN Yong, WU Jing, WANG Chaosheng, et al. Preparation and environmental degradation behavior of biodegradable poly(butylene adipate-co-terephthalate) fiber[J]. Journal of Textile Research, 2022, 43(2): 37-43.
[7] 赵迪, 黄晋博, 陈亦萱, 等. 纳米材料改性生物可降解包装的研究进展[J]. 绿色包装, 2021(12): 17-20.
ZHAO Di, HUANG Jinbo, CHEN Yixuan, et al. Research progress of biodsgradable packaging modified by nano materials[J]. Green Packaging, 2021(12): 17-20.
[8] 夏伦超, 原晓丽, 司江坤, 等. 生物可降解塑料的发展现状及未来展望[J]. 广州化工, 2021, 49(18): 7-8.
XIA Lunchao, YUAN Xiaoli, SI Jiangkun, et al. Development status and prospect of biodegradable plastics industry[J]. Guangdong Chemical Industry, 2021, 49(18): 7-8.
[9] 徐智泉. PLA/PHBV共混纤维结构及其低温染色性能[J]. 纺织报告, 2022, 41(1): 3-4.
XU Zhiquan. Mixed fiber structure of PLA/PHBV and its low-temperature staining performance[J]. Textile Reports, 2022, 41(1): 3-4.
[10] 杨福斌, 李培榕, 石东亮, 等. PHBV/PLA纤维和其他纤维混合试样的定量分析方法研究[J]. 合成纤维工业, 2021, 44(1): 87-91.
YANG Fubin, LI Peirong, SHI Dongliang, et al. Quantitative analysis methods of PHBV/PLA fiber and other fibers mixture[J]. China Synthetic Fiber Industry, 2021, 44(1): 87-91.
[11] 张隐, 潘明珠. PHBV纳米纤维的静电纺丝及在生物医用领域的研究进展[J]. 高分子通报, 2021(1): 17-27.
ZHANG Yin, PAN Mingzhu. Research progress of preparation of poly (3-hydroxybutyrate-co-3-hydroxy-valerate) nano-fibers based on electrospinning and its applications in biomedicine fields[J]. Polymer Bulletin, 2021(1): 17-27.
[12] 王宝任, 张翔, 金岳, 等. P(3,4HB)/PHBV共混改性及微生物降解研究[J]. 中国塑料, 2016, 30(12): 25-29.
WANG Baoren, ZHANG Xiang, JIN Yue, et al. Blending modification and microbiological degradation of P(3,4HB)/PHBV blends[J]. China Plastics, 2016, 30(12): 25-29.
[13] 陈海燕, 吴丰昌, 魏源, 等. 生物基聚合物PHBV和PLA复合材料在不同介质中的生物降解及其影响因素[J]. 中国环境科学, 2018, 38(7): 2706-2713.
CHEN Haiyan, WU Fengchang, WEI Yuan, et al. Biodegradation of biologically based polymer PHBV and PLA composites in different media and its influencing factors[J]. China Environmental Science, 2018, 38(7): 2706-2713.
[14] SCHMID M, RITTER A, GRUBELNIK A, et al. Autoxidation of medium chain length polyhydrox-yalkanoate.[J]. Biomacromolecules, 2007, 8(2):579-84.
doi: 10.1021/bm060785m
[15] FECHINE G, RABELLO M S, MAJOR R, et al. Surface characterization of photodegraded poly(ethylene terephthalate). The effect of ultraviolet absorbers[J]. Polymer, 2004, 45(7): 2303-2308.
doi: 10.1016/j.polymer.2004.02.003
[16] 孙常勇, 高建国, 刘洋, 等. PET热氧老化过程的光学性质变化[J]. 工程塑料应用, 2016, 44(11): 96-99.
SUN Changyong, GAO Jianguo, LIU Yang, et al. Changes of optical properties in hot oxygen oxidation process of PET[J]. Engineering Plastics Application, 2016, 44(11): 96-99.
[17] 梁超, 李文刚, 张幼维, 等. PET纤维热老化的研究[J]. 合成技术及应用, 2014, 29(1): 15-18,46.
LIANG Chao, LI Wengang, ZHANG Youwei, et al. Study on thermal alageing of PET fiber[J]. Synthetic Technology Application, 2014, 29(1): 15-18,46.
[18] 顾华卿, 乔秀颖, 金辅伟, 等. 高温高湿加速老化对聚碳酸酯结构和性能的影响研究[J]. 塑料工业, 2017, 45(7):22-26,31.
GU Huaqin, QIAO Xiuying, JIN Fuwei, et al. Investigations of the effects of high temperature and humidity accelerated aging on the structure and properties of polycarbonate[J]. China Plastics Industry, 2017, 45(7):22-26,31.
[19] 顾聚兴. 傅里叶变换红外光谱仪[J]. 红外, 2009, 30(6): 1.
GU Juxing. Fourier transform infrared spectroscopy[J]. Infrared, 2009, 30(6): 1.
[20] 张小英. 土壤填埋降解后丝素纤维的微观结构和力学性能[J]. 纺织学报, 2008, 29(2): 7-10.
ZHANG Xiaoying. Microstructures and mechanical properties of silk fibroin fibers after soil-burial biodegradation[J]. Journal of Textile Research, 2008, 29(2): 7-10.
[21] 唐莹莹, 陈华君, 潘志娟. 纤维素纤维在活性污泥中的生物降解性[J]. 纺织学报, 2010, 31(9): 5-10.
TANG Yingying, CHEN Huajun, PAN Zhijuan. Biodegradability of cellulose fibers in activated sludge[J]. Journal of Textile Research, 2010, 31(9): 5-10.
[1] 夏榆, 姚菊明, 周杰, 毛梦慧, 张玉梅, 姚勇波. 聚丁二酸丁二醇酯/丝胶蛋白共混纤维的制备及其性能[J]. 纺织学报, 2023, 44(04): 1-7.
[2] 吴靖, 韩晨晨, 高卫东. 基于类骨骼肌结构的纱线基驱动器性能及应用[J]. 纺织学报, 2023, 44(02): 128-134.
[3] 陈欢欢, 陈凯凯, 杨慕容, 薛昊龙, 高伟洪, 肖长发. 聚乳酸/百里酚抗菌纤维的制备与性能[J]. 纺织学报, 2023, 44(02): 34-43.
[4] 王曙东. 三维多孔生物可降解聚合物人工食管支架的结构与力学性能[J]. 纺织学报, 2022, 43(12): 16-21.
[5] 朱斐超, 张宇静, 张强, 叶翔宇, 张恒, 汪伦合, 黄瑞杰, 刘国金, 于斌. 聚乳酸基生物可降解熔喷非织造材料的研究进展与展望[J]. 纺织学报, 2022, 43(01): 49-57.
[6] 王亚宁, 周楚帆, 乌婧, 王华平. 生物基异己糖醇聚酯的制备及其构效关系研究进展[J]. 纺织学报, 2021, 42(08): 8-16.
[7] 苏梦茹, 邹婷, 陈颀超, 李超婧, 王富军, 王璐. 医用倒刺缝合线的研究进展[J]. 纺织学报, 2021, 42(05): 178-184.
[8] 敖利民, 唐雯, 姜银玲. 亚麻长麻/涤纶长丝复合纱的纺制及其性能比较[J]. 纺织学报, 2019, 40(11): 38-44.
[9] 包红, 徐水, 张小宁, 成国涛, 朱勇. 家蚕丝素蛋白阳离子化及其对羊毛性状的影响[J]. 纺织学报, 2019, 40(07): 24-30.
[10] 张腾飞, 石禄丹, 胡红梅, 王宇, 王学利, 俞建勇. 生物基聚酰胺56低聚物改性聚酯的合成及其表征[J]. 纺织学报, 2019, 40(06): 1-7.
[11] 范晓燕 刘颖 潘能宇 李蓉 任学宏 Huang Tung-Shi. 应用电子束辐射技术的抗菌改性聚酯纳米纤维膜[J]. 纺织学报, 2017, 38(06): 157-162.
[12] 金恩琪 李曼丽 张玲玲. 脂肪族单体结构对水溶性聚酯浆纱性能的影响[J]. 纺织学报, 2016, 37(06): 66-71.
[13] 马源 周永凯 张华. 涤纶长丝/微孔涤纶纤维同浴同色染色技术[J]. 纺织学报, 2014, 35(6): 68-0.
[14] 史春丽 缪旭红. 仿棉涤纶长丝经编织物的沸水收缩率及其影响因素[J]. 纺织学报, 2014, 35(5): 34-0.
[15] 王国轩;郭兴峰. 磁控溅射镀膜时间对涤纶长丝力学性能的影响[J]. 纺织学报, 2010, 31(7): 21-24.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!