纺织学报 ›› 2023, Vol. 44 ›› Issue (07): 103-109.doi: 10.13475/j.fzxb.20220405401
FU Han1,2, HU Feng1,2(), GONG Jie1,2, YU Lianqing1,2
摘要:
为解决复杂图案织物疵点检测精度不足的问题,通过将疵点视为对织物纹理的破坏,利用生成对抗神经网络对疵点图像进行重构,使其恢复成正常织物纹理的图像,然后将重构图像与缺陷图像进行求异计算,对求异结果进行图像分割,实现疵点检测目的。同时引入自注意力机制、L1损失函数和改进的结构损失函数用于改进生成对抗神经网络结构及其损失函数,用以分析并解决疵点图像重构精度差和网络处理图像细节能力的不足。最后采用本文方法与无监督缺陷检测算法(ReNet-D)和SDDM-PS 2种方法对5种不同复杂图案织物疵点进行实验对比,结果表明本文方法检测精度更高。
中图分类号:
[1] |
WEIMER D, SCHOLZ-REITER B, SHPITALNI M. Design of deep convolutional neural network architectures for automated feature extraction in industrial inspection[J]. CIRP Annals, 2016, 65(1): 417-420.
doi: 10.1016/j.cirp.2016.04.072 |
[2] | 刘娆. 卷积神经网络在纺织品缺陷检测中的应用研究[D]. 西安: 西安工程大学, 2019: 35-45. |
LIU Xiao. The application of convolutional neural network in textile defect detection[D]. Xi'an: Xi'an Polytechnic University, 2019: 35-45. | |
[3] |
LI Yundong, ZHAO Weigang, PAN Jiahao. Deformable patterned fabric defectdetection with Fisher criterion-based deep learning[J]. IEEE Transactions on Automation Science and Engineering, 2016, 14(2): 1256-1264.
doi: 10.1109/TASE.2016.2520955 |
[4] |
MEI Shuang, YANG Hua, YIN Zhouping. An unsupervised learning-based approach for automated defect inspection on textured surfaces[J]. IEEE Transactions on Instrumentation and Measurement, 2018, 67(6): 1266-1277.
doi: 10.1109/TIM.2018.2795178 |
[5] | 余文勇, 张阳, 姚海明, 等. 基于轻量化重构网络的表面缺陷视觉检测[J]. 自动化学报, 2020, 48(9):2175-2186. |
YU Wenyong, ZHANG Yang, YAO Haiming, et al. Visual inspection of surface defects based on lightweight reconstruction network[J]. ACTA Automatica Sinica, 2020, 48(9):2175-2186. | |
[6] |
ZHANG D, SONG K, XU J, et al. An image-level weakly supervised segmentation method for no-service rail surface defect with size prior[J]. Mechanical Systems and Signal Processing, 2022, 165(15): 108334-108348.
doi: 10.1016/j.ymssp.2021.108334 |
[7] | 李剑. 基于无监督学习的木地板缺陷检测方法研究[D]. 北京: 北京交通大学, 2021: 40-45. |
LI Jian. Research on defect inspection of wooden floor based on unsupervised learning[D]. Beijing: Beijing Jiaotong University, 2021: 40-45. | |
[8] |
ZHAO Xinyu, WU Bin. Algorithm for real-time defect detection of micropipe inner surface[J]. Applied Optics, 2021, 60(29): 9167-9179.
doi: 10.1364/AO.438287 |
[9] | 张哲源. 基于生成对抗网络的机织物疵点检测研究[D]. 上海: 东华大学, 2022: 1-7. |
ZHANG Zheyuan. Research on woven fabric defect defection based on generative adversarial network[D]. Shanghai: Donghua University, 2022:1-7. | |
[10] |
HUANG R, DUAN B, ZHANG Y, et al. Priorguided GAN based interactive airplane engine damage image augmentation method[J]. Chinese Journal of Aeronautics, 2021, 35(10): 222-232.
doi: 10.1016/j.cja.2021.11.021 |
[11] | ISOLA P, ZHU J Y, ZHOU T, et al. Image-to-image translation with conditional adversarial networks[C]// HONOLULU H I. Conference on Computer Vision & Pattern Recognition. New York: IEEE, 2016:5967-5976. |
[12] |
LI Huan, TANG Jinglei. Dairy goat image generation based on improved self-attention generative adversarial networks[J]. IEEE Access, 2020, 8(99): 62448-62457.
doi: 10.1109/Access.6287639 |
[13] |
ZHANG H, GOODFELLOW I, METAXAS D, et al. Self-attention generative adversarial networks[J]. Computer Science, 2018. DOI: 10.48550/arXiv.1805.08318.
doi: 10.48550/arXiv.1805.08318 |
[14] | LIU X, QIAO Y, XIONG Y, et al. Cascade conditional generative adversarial nets for spatial-spectral hyperspectral sample generation[J]. Science China Information Sciences, 2020, 63(4):77-92. |
[15] |
ZHAO Hang, GALLO Orazio, FROSIO Luri, et al. Loss functions for image restoration with neural networks[J]. IEEE Transactions on Computational Imaging, 2017, 3(1): 47-57.
doi: 10.1109/TCI.2016.2644865 |
[16] |
WANG Z, BOVIK A C, SHEIKH H R, et al. Image quality assessment: from error visibility to structural similarity[J]. IEEE Trans Image Process, 2004, 13(4): 600-612.
doi: 10.1109/TIP.2003.819861 |
[17] | 徐启永, 胡峰, 王传桐, 等. 改进频率调谐显著算法在疵点图像分割中的应用[J]. 纺织学报, 2018, 39(5): 125-131. |
XU Qiyong, HU Feng, WANG Chuantong, et al. Segmentation of fabric defect images based on improved frequenytuned salient algorithm[J]. Journal of Textile Research, 2018, 39(5): 125-131. | |
[18] |
MAKHZANI A, SHLENS J, JAITLY N, et al. Adversarial autoencoders[J]. Computer Science, 2015. DOI: 10.48550/arXiv.1511.05644.
doi: 10.48550/arXiv.1511.05644 |
[19] | ZHAO Z, LI B, DONG R, et al. A surface defect detection method based on positive samples[J]. PRICAI: Trends in Artificial Intelligence, 2018, 29(95): 473-481. |
[1] | 闫本超, 潘如如, 周建, 王蕾, 王小虎. 基于改进Itti显著模型的织物疵点实时检测[J]. 纺织学报, 2023, 44(07): 95-102. |
[2] | 李杨, 彭来湖, 李建强, 刘建廷, 郑秋扬, 胡旭东. 基于深度信念网络的织物疵点检测[J]. 纺织学报, 2023, 44(02): 143-150. |
[3] | 王斌, 李敏, 雷承霖, 何儒汉. 基于深度学习的织物疵点检测研究进展[J]. 纺织学报, 2023, 44(01): 219-227. |
[4] | 金守峰, 侯一泽, 焦航, 张鹏, 李宇涛. 基于改进AlexNet模型的抓毛织物质量检测方法[J]. 纺织学报, 2022, 43(06): 133-139. |
[5] | 吕文涛, 林琪琪, 钟佳莹, 王成群, 徐伟强. 面向织物疵点检测的图像处理技术研究进展[J]. 纺织学报, 2021, 42(11): 197-206. |
[6] | 李东洁, 郭帅, 杨柳. 基于改进图像阈值分割算法的纱线疵点检测[J]. 纺织学报, 2021, 42(03): 82-88. |
[7] | 朱磊, 任梦凡, 潘杨, 李博涛. 基于相似性定位和超像素分割的织物疵点检测[J]. 纺织学报, 2020, 41(10): 58-66. |
[8] | 周文明, 周建, 潘如如. 应用上下文视觉显著性的色织物疵点检测[J]. 纺织学报, 2020, 41(08): 39-44. |
[9] | 杨恩君, 廖义辉, 刘安东, 俞立. 基于低秩分解的织物疵点检测[J]. 纺织学报, 2020, 41(05): 72-78. |
[10] | 张缓缓, 马金秀, 景军锋, 李鹏飞. 基于改进的加权中值滤波与K-means聚类的织物缺陷检测[J]. 纺织学报, 2019, 40(12): 50-56. |
[11] | 杜帅, 李岳阳, 王孟涛, 罗海驰, 蒋高明. 基于改进局部自适应对比法的织物疵点检测[J]. 纺织学报, 2019, 40(02): 38-44. |
[12] | 王传桐 胡峰 徐启永 吴雨川 余联庆. 改进频率调谐显著算法在疵点辨识中的应用[J]. 纺织学报, 2018, 39(03): 154-160. |
[13] | 何峰 周亚同 赵翔宇 刘猛 张忠伟. 纹理织物疵点窗口跳步形态学法检测[J]. 纺织学报, 2017, 38(10): 124-131. |
[14] | 王传桐 胡峰 徐启永 吴雨川 余联庆. 采用Gabor滤波簇和等距映射算法的织物疵点检测方法[J]. 纺织学报, 2017, 38(03): 162-167. |
[15] | 李春雷 高广帅 刘洲峰 刘秋丽 李文羽. 应用方向梯度直方图和低秩分解的织物疵点检测算法[J]. 纺织学报, 2017, 38(03): 149-154. |
|