纺织学报 ›› 2023, Vol. 44 ›› Issue (05): 184-190.doi: 10.13475/j.fzxb.20220406201
颜丙义1,2,3, 侯金1,2,3(), 黄启煜1,2,3, 杨汉城1,2,3, 田进1,2,3, 杨春勇1,2,3
YAN Bingyi1,2,3, HOU Jin1,2,3(), HUANG Qiyu1,2,3, YANG Hancheng1,2,3, TIAN Jin1,2,3, YANG Chunyong1,2,3
摘要:
为探索传统服饰文化的智能化保护手段和提高传统服饰文化的传播效率,以加权投票法集成多注意力机制的传统服饰识别算法为核心,构建了一个典型传统服饰图像的在线识别系统。首先,通过书籍扫描和线下拍摄等手段收集传统服饰图像数据,再联合多背景替换和几何变换混合增强服饰图像数据,完成传统服饰图像数据集的构建。随后,采用迁移学习技术在DenseNet169网络上分别引入了通道注意力、卷积注意力和位置注意力3种机制来构建模型,并对3种模型的识别结果进行加权投票判决,实现对传统服饰图像的高精度识别。在此基础上,通过对未知待测图像进行在线裁剪和自适应等规范化预处理,提高了识别系统的泛化适应性。最后,采用Web和云计算技术实现了系统的在线识别、交互、显示和账号管理等功能集成。测试结果表明,本文实现的传统服饰识别算法在验证集上的识别准确率达到了93.5%,构建的系统能够有效地在线识别15类传统服饰图像,对传统服饰文化的传播和保护具有一定的促进作用。
中图分类号:
[1] | KIAPOUR H M, HAN X F, LAZEBNIK S, et al. Where to buy it: matching street clothing photos in online shops[C]// International Conference on Computer Vision(ICCV). Santiago: IEEE, 2015: 3343-3351. |
[2] | HUANG J, FERIS R S, CHEN Q, et al. Cross-domain image retrieval with a dual attribute-aware ranking network[C]// International Conference on Computer Vision(CVPR). Santiago: IEEE, 2015:1062-1070. |
[3] | LIU Z W, LUO P, QIU S, et al. DeepFashion: powering robust clothes recognition and retrieval with rich annotations[C]// Computer Vision & Pattern Recognition(CVPR). Los Alamitos: IEEE, 2016: 1096-1104. |
[4] | 李东, 万贤福, 汪军. 采用傅里叶描述子和支持向量机的服装款式识别方法[J]. 纺织学报, 2017, 38(5): 122-127. |
LI Dong, WAN Xianfu, WANG Jun. Clothing style recognition approach using Fourier descriptors and support vector machines[J]. Journal of Textile Research, 2017, 38(5):122-127. | |
[5] | HUO P, WANG Y H, LIU Q J, et al. A part-based and feature fusion method for clothing classification[C]// Proceedings of Advances in Multimedia Information Processing. Heidelberg: Springer, 2016:231-241. |
[6] | 吴圣美, 刘骊, 付晓东, 等. 结合人体检测和多任务学习的少数民族服装识别[J]. 中国图象图形学报, 2019, 24(4): 562-572. |
WU Shengmei, LIU Li, FU Xiaodong, et al. Human detection and multi-task learning for minority clothing recognition[J]. Journal of Image and Graphics, 2019, 24(4): 562-572. | |
[7] |
SUN Y, LIU Q. Attribute recognition from clothing using a faster R-CNN based multitask network[J]. International Journal of Wavelets, Multiresolution and Information Processing, 2018. DOI: 10.1142/S021969131840009X.
doi: 10.1142/S021969131840009X |
[8] | 杨冰, 徐丹, 张豪远, 等. 基于改进的DenseNet-BC对少数民族服饰的识别[J]. 浙江大学学报(理学版), 2021, 48(6):676-683. |
YANG Bing, XÜ Dan, ZHANG Haoyuan, et al. Minority clothing recognition based on improved DenseNet-BC[J]. Journal of Zhejiang University(Science Edition), 2021, 48(6):676-683. | |
[9] | 胡昕. 基于机器学习的中国特色服饰识别[D]. 大连: 大连交通大学, 2018:1-64. |
HU Xin. Clothing identification with Chinese characteristics based on machine learning[D]. Dalian: Dalian Jiaotong University, 2018:1-64. | |
[10] | HUANG G, LIU Z, MAATEN LVE, et al. Densely connected convolutional networks[C]// Computer Vision & Pattern Recognition(CVPR). Honolulu: IEEE, 2017:2261-2269. |
[11] |
JIE H, LI S, GANG S, et al. Squeeze-and-excitation networks[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2017, 42(8):2011-2023.
doi: 10.1109/TPAMI.34 |
[12] | WOO S, PARK J, LEE J Y, et al. CBAM: convolutional block attention module[C]// European Conference on Computer Vision(ECCV). Munich: Springer, 2018:3-19. |
[13] | HOU Q, ZHOU D, FENG J. Coordinate attention for efficient mobile network design[C]// Conference on Computer Vision and Pattern Recognition(CVPR). Nashville: IEEE, 2021:13708-13717. |
[14] |
ALEX K, ILYA S, GEOFFREY E H. ImageNet classification with deep convolutional neural networks[J]. Communications of the ACM, 2017, 60(6): 84-90.
doi: 10.1145/3065386 |
[15] | 典型传统服饰识别[EB/OL].(2019-2-05) [2022-2-13]. http://www.ctfushi.cn. |
Typical traditional costume identification[EB/OL]. (2019-2-05) [2022-2-13]. http://www.ctfushi.cn. |
[1] | 金守峰, 侯一泽, 焦航, 张鹏, 李宇涛. 基于改进AlexNet模型的抓毛织物质量检测方法[J]. 纺织学报, 2022, 43(06): 133-139. |
[2] | 江慧, 马彪. 基于服装风格的款式相似度算法[J]. 纺织学报, 2021, 42(11): 129-136. |
[3] | 王奕文, 罗戎蕾, 康宇哲. 基于卷积神经网络的汉服关键尺寸自动测量[J]. 纺织学报, 2020, 41(12): 124-129. |
[4] | 夏海浜, 黄鸿云, 丁佐华. 基于迁移学习与支持向量机的服装舒适度评估[J]. 纺织学报, 2020, 41(06): 125-131. |
|